Seven challenges in the multiscale modeling of multicellular tissues.

IF 4.6 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL WIREs Mechanisms of Disease Pub Date : 2022-01-01 Epub Date: 2021-05-04 DOI:10.1002/wsbm.1527
Alexander G Fletcher, James M Osborne
{"title":"Seven challenges in the multiscale modeling of multicellular tissues.","authors":"Alexander G Fletcher, James M Osborne","doi":"10.1002/wsbm.1527","DOIUrl":null,"url":null,"abstract":"<p><p>The growth and dynamics of multicellular tissues involve tightly regulated and coordinated morphogenetic cell behaviors, such as shape changes, movement, and division, which are governed by subcellular machinery and involve coupling through short- and long-range signals. A key challenge in the fields of developmental biology, tissue engineering and regenerative medicine is to understand how relationships between scales produce emergent tissue-scale behaviors. Recent advances in molecular biology, live-imaging and ex vivo techniques have revolutionized our ability to study these processes experimentally. To fully leverage these techniques and obtain a more comprehensive understanding of the causal relationships underlying tissue dynamics, computational modeling approaches are increasingly spanning multiple spatial and temporal scales, and are coupling cell shape, growth, mechanics, and signaling. Yet such models remain challenging: modeling at each scale requires different areas of technical skills, while integration across scales necessitates the solution to novel mathematical and computational problems. This review aims to summarize recent progress in multiscale modeling of multicellular tissues and to highlight ongoing challenges associated with the construction, implementation, interrogation, and validation of such models. This article is categorized under: Reproductive System Diseases > Computational Models Metabolic Diseases > Computational Models Cancer > Computational Models.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478939/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Mechanisms of Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wsbm.1527","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The growth and dynamics of multicellular tissues involve tightly regulated and coordinated morphogenetic cell behaviors, such as shape changes, movement, and division, which are governed by subcellular machinery and involve coupling through short- and long-range signals. A key challenge in the fields of developmental biology, tissue engineering and regenerative medicine is to understand how relationships between scales produce emergent tissue-scale behaviors. Recent advances in molecular biology, live-imaging and ex vivo techniques have revolutionized our ability to study these processes experimentally. To fully leverage these techniques and obtain a more comprehensive understanding of the causal relationships underlying tissue dynamics, computational modeling approaches are increasingly spanning multiple spatial and temporal scales, and are coupling cell shape, growth, mechanics, and signaling. Yet such models remain challenging: modeling at each scale requires different areas of technical skills, while integration across scales necessitates the solution to novel mathematical and computational problems. This review aims to summarize recent progress in multiscale modeling of multicellular tissues and to highlight ongoing challenges associated with the construction, implementation, interrogation, and validation of such models. This article is categorized under: Reproductive System Diseases > Computational Models Metabolic Diseases > Computational Models Cancer > Computational Models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多细胞组织多尺度建模的七大挑战。
多细胞组织的生长和动态涉及严格调控和协调的形态发生细胞行为,如形状变化、运动和分裂,这些行为受亚细胞机制支配,并通过短程和远程信号耦合。发育生物学、组织工程学和再生医学领域面临的一个关键挑战是了解不同尺度之间的关系如何产生新的组织尺度行为。分子生物学、活体成像和体内外技术的最新进展彻底改变了我们通过实验研究这些过程的能力。为了充分利用这些技术,并更全面地了解组织动力学的因果关系,计算建模方法越来越多地跨越多个空间和时间尺度,并将细胞形状、生长、力学和信号传递结合起来。然而,这些模型仍然具有挑战性:每个尺度的建模需要不同领域的技术技能,而跨尺度的整合则需要解决新的数学和计算问题。这篇综述旨在总结多细胞组织多尺度建模的最新进展,并强调与此类模型的构建、实施、查询和验证相关的持续挑战。本文归类于生殖系统疾病 > 计算模型 代谢性疾病 > 计算模型 癌症 > 计算模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
WIREs Mechanisms of Disease
WIREs Mechanisms of Disease MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
11.40
自引率
0.00%
发文量
45
期刊最新文献
Uncovering the Embryonic Origins of Duchenne Muscular Dystrophy. Advances in understanding immune homeostasis in latent tuberculosis infection. SLC40A1 in iron metabolism, ferroptosis, and disease: A review. The yeast-human coevolution: Fungal transition from passengers, colonizers, and invaders. Ascomycetes yeasts: The hidden part of human microbiome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1