Sydney Y Schaefer, Kevin Duff, Andrew Hooyman, John M Hoffman
{"title":"Improving Prediction of Amyloid Deposition in Mild Cognitive Impairment With a Timed Motor Task.","authors":"Sydney Y Schaefer, Kevin Duff, Andrew Hooyman, John M Hoffman","doi":"10.1177/15333175211048262","DOIUrl":null,"url":null,"abstract":"<p><p>Cortical amyloid deposition is one of the hallmark biomarkers of Alzheimer's disease (AD). However, given how cost- and time-intensive amyloid imaging can be, there is a continued need for a low-cost, non-invasive, and accessible enrichment strategy to pre-screen individuals for their likelihood of amyloid prior to imaging. Previous work supports the use of coordinated limb movement as a potential screening tool, even after controlling for cognitive and daily function. Thirty-six patients diagnosed with amnestic mild cognitive impairment over the age of 65 underwent 18F-Flutemetamol amyloid-positron emission tomography (PET) imaging and then completed a timed motor task involving upper limb coordination. This task takes ∼5 minutes to administer and score. Multivariate linear regression and receiver operator characteristic analyses showed that including motor task performance improved model prediction of amyloid burden. Results support the rationale for including functional upper extremity motor assessment as a cost- and time-effective means to screen participants for amyloid deposition.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"15333175211048262"},"PeriodicalIF":4.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666206/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15333175211048262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Cortical amyloid deposition is one of the hallmark biomarkers of Alzheimer's disease (AD). However, given how cost- and time-intensive amyloid imaging can be, there is a continued need for a low-cost, non-invasive, and accessible enrichment strategy to pre-screen individuals for their likelihood of amyloid prior to imaging. Previous work supports the use of coordinated limb movement as a potential screening tool, even after controlling for cognitive and daily function. Thirty-six patients diagnosed with amnestic mild cognitive impairment over the age of 65 underwent 18F-Flutemetamol amyloid-positron emission tomography (PET) imaging and then completed a timed motor task involving upper limb coordination. This task takes ∼5 minutes to administer and score. Multivariate linear regression and receiver operator characteristic analyses showed that including motor task performance improved model prediction of amyloid burden. Results support the rationale for including functional upper extremity motor assessment as a cost- and time-effective means to screen participants for amyloid deposition.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.