{"title":"OSKM-mediated reversible reprogramming of cardiomyocytes regenerates injured myocardium.","authors":"Gregory Farber, Jiandong Liu, Li Qian","doi":"10.1186/s13619-021-00106-3","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular reprogramming has rapidly become a promising methodology to generate new cardiomyocytes from non-cardiomyocyte cell types. Using the transient expression of OSKM factors, Chen et al. demonstrate a unique reprogramming strategy involving the modulation of the resident adult cardiomyocyte identity to an immature proliferative state (Science 373:1537-40, 2021). This OSKM-mediated reversion results in the adoption by adult murine cardiomyocytes of a transcriptional profile similar to cardiomyocytes found in developing hearts, as well as increased proliferative capacity of these reprogrammed cardiomyocytes compared to mature cardiomyocytes. Furthermore, this novel approach enhances the regeneration of adult murine hearts post-myocardial injury. Although concerns and questions remain, the encouraging results of this study advance the field of cardiac regeneration by providing a new technique to generate cardiomyocytes as well as insights into cardiomyocyte dedifferentiation and its relation to proliferation.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8762525/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13619-021-00106-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Cellular reprogramming has rapidly become a promising methodology to generate new cardiomyocytes from non-cardiomyocyte cell types. Using the transient expression of OSKM factors, Chen et al. demonstrate a unique reprogramming strategy involving the modulation of the resident adult cardiomyocyte identity to an immature proliferative state (Science 373:1537-40, 2021). This OSKM-mediated reversion results in the adoption by adult murine cardiomyocytes of a transcriptional profile similar to cardiomyocytes found in developing hearts, as well as increased proliferative capacity of these reprogrammed cardiomyocytes compared to mature cardiomyocytes. Furthermore, this novel approach enhances the regeneration of adult murine hearts post-myocardial injury. Although concerns and questions remain, the encouraging results of this study advance the field of cardiac regeneration by providing a new technique to generate cardiomyocytes as well as insights into cardiomyocyte dedifferentiation and its relation to proliferation.
Cell RegenerationBiochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍:
Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics:
◎ Embryonic stem cells
◎ Induced pluripotent stem cells
◎ Tissue-specific stem cells
◎ Tissue or organ regeneration
◎ Methodology
◎ Biomaterials and regeneration
◎ Clinical translation or application in medicine