Implication of plant growth-promoting rhizobacteria of Bacillus spp. as biocontrol agents against wilt disease caused by Fusarium oxysporum Schlecht. in Vicia faba L.

Q2 Biochemistry, Genetics and Molecular Biology Biomolecular Concepts Pub Date : 2021-12-31 DOI:10.1515/bmc-2021-0020
Mostafa Mohamed El-Sersawy, Saad El-Din Hassan, Abbas A El-Ghamry, Amr Mahmoud Abd El-Gwad, Amr Fouda
{"title":"Implication of plant growth-promoting rhizobacteria of <i>Bacillus</i> spp. as biocontrol agents against wilt disease caused by <i>Fusarium oxysporum</i> Schlecht. in <i>Vicia faba</i> L.","authors":"Mostafa Mohamed El-Sersawy,&nbsp;Saad El-Din Hassan,&nbsp;Abbas A El-Ghamry,&nbsp;Amr Mahmoud Abd El-Gwad,&nbsp;Amr Fouda","doi":"10.1515/bmc-2021-0020","DOIUrl":null,"url":null,"abstract":"<p><p>Out of seven <i>Fusarium</i> spp. isolated from infected faba bean roots, two <i>Fusarium oxysporum</i> were selected and showed faba bean-wilt disease severity with percentages of 68% and 47% under greenhouse conditions. The <i>F. oxysporum</i> showed the highest wilt disease was selected to complete the current study. Three rhizobacterial strains were isolated and identified as <i>Bacillus velezensis</i> Vb1, <i>B. paramycoides</i> Vb3, and <i>B. paramycoides</i> Vb6. These strains showed the highest <i>in-vitro</i> antagonistic activity by the dual-culture method against selected <i>F. oxysporum</i> with inhibition percentages of 59±0.2, 46±0.3, and 52±0.3% for Vb1, Vb3, and Vb6, respectively. These rhizobacterial strains exhibit varied activity for nitrogen-fixing and phosphate-solubilizing. Moreover, these strains showed positive results for ammonia, HCN, and siderophores production. The phytohormones production (indole-3-acetic acid, ABA, benzyl, kinten, ziaten, and GA<sub>3</sub>) and secretion of various lytic enzymes were recorded by these strains with varying degrees. Under greenhouse conditions, the rhizobacterial strains Vb1, Vb3, Vb6, and their consortium can protect faba bean from wilt caused by <i>F. oxysporum</i> with percentages of 70, 60, 65, and 82%, respectively. Under field conditions, the inoculation with the rhizobacterial consortium (Vb1+Vb3+Vb6) significantly increases the growth performance of the <i>F. oxysporum</i>-infected faba bean plant and recorded the highest wilt protection (83.3%).</p>","PeriodicalId":38392,"journal":{"name":"Biomolecular Concepts","volume":" ","pages":"197-214"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular Concepts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmc-2021-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 10

Abstract

Out of seven Fusarium spp. isolated from infected faba bean roots, two Fusarium oxysporum were selected and showed faba bean-wilt disease severity with percentages of 68% and 47% under greenhouse conditions. The F. oxysporum showed the highest wilt disease was selected to complete the current study. Three rhizobacterial strains were isolated and identified as Bacillus velezensis Vb1, B. paramycoides Vb3, and B. paramycoides Vb6. These strains showed the highest in-vitro antagonistic activity by the dual-culture method against selected F. oxysporum with inhibition percentages of 59±0.2, 46±0.3, and 52±0.3% for Vb1, Vb3, and Vb6, respectively. These rhizobacterial strains exhibit varied activity for nitrogen-fixing and phosphate-solubilizing. Moreover, these strains showed positive results for ammonia, HCN, and siderophores production. The phytohormones production (indole-3-acetic acid, ABA, benzyl, kinten, ziaten, and GA3) and secretion of various lytic enzymes were recorded by these strains with varying degrees. Under greenhouse conditions, the rhizobacterial strains Vb1, Vb3, Vb6, and their consortium can protect faba bean from wilt caused by F. oxysporum with percentages of 70, 60, 65, and 82%, respectively. Under field conditions, the inoculation with the rhizobacterial consortium (Vb1+Vb3+Vb6) significantly increases the growth performance of the F. oxysporum-infected faba bean plant and recorded the highest wilt protection (83.3%).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
促进植物生长的芽孢杆菌属根瘤菌防治枯萎病的意义。在维州faba L。
从侵染蚕豆根中分离到7株枯萎菌,其中2株尖孢枯萎菌在温室条件下表现出蚕豆枯萎病的严重程度,分别为68%和47%。选择枯萎病发病率最高的尖孢镰刀菌来完成本研究。分离得到3株根瘤菌,分别为velezensis Vb1、B. parycoides Vb3和B. parycoides Vb6。双培养法对所选尖孢镰刀菌Vb1、Vb3和Vb6的抑菌率分别为59±0.2、46±0.3和52±0.3%,体外抑菌活性最高。这些根杆菌菌株表现出不同的固氮和溶磷活性。此外,这些菌株在氨、HCN和铁载体生产方面显示出阳性结果。不同程度地记录了这些菌株的植物激素(吲哚-3-乙酸、ABA、苄基、kinten、ziaten和GA3)的产生和各种裂解酶的分泌。在温室条件下,根瘤菌Vb1、Vb3、Vb6及其组合对蚕豆枯萎病的防效率分别为70%、60%、65%和82%。在田间条件下,接种Vb1+Vb3+Vb6的根瘤菌联合体显著提高了尖孢镰刀菌侵染蚕豆植株的生长性能,并取得了最高的防枯萎率(83.3%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomolecular Concepts
Biomolecular Concepts Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
5.30
自引率
0.00%
发文量
27
审稿时长
12 weeks
期刊介绍: BioMolecular Concepts is a peer-reviewed open access journal fostering the integration of different fields of biomolecular research. The journal aims to provide expert summaries from prominent researchers, and conclusive extensions of research data leading to new and original, testable hypotheses. Aspects of research that can promote related fields, and lead to novel insight into biological mechanisms or potential medical applications are of special interest. Original research articles reporting new data of broad significance are also welcome. Topics: -cellular and molecular biology- genetics and epigenetics- biochemistry- structural biology- neurosciences- developmental biology- molecular medicine- pharmacology- microbiology- plant biology and biotechnology.
期刊最新文献
Anti-arthritic potential of crude sulfated polysaccharide from marine macroalgae Sargassum ilicifolium (Turner) C. Agardh: Regulation of cytokine cascade. Exploring cardiovascular implications in systemic lupus erythematosus: A holistic analysis of complications, diagnostic criteria, and therapeutic modalities, encompassing pharmacological and adjuvant approaches. Toxicity of bisphenol A and p-nitrophenol on tomato plants: Morpho-physiological, ionomic profile, and antioxidants/defense-related gene expression studies. A comprehensive review of the interaction between COVID-19 spike proteins with mammalian small and major heat shock proteins. Biochemical dynamics during postharvest: Highlighting the interplay of stress during storage and maturation of fresh produce.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1