Ndema Habib, Petrus S Steyn, Victoria Boydell, Joanna Paula Cordero, My Huong Nguyen, Soe Soe Thwin, Dela Nai, Donat Shamba, James Kiarie
{"title":"The use of segmented regression for evaluation of an interrupted time series study involving complex intervention: the CaPSAI project experience.","authors":"Ndema Habib, Petrus S Steyn, Victoria Boydell, Joanna Paula Cordero, My Huong Nguyen, Soe Soe Thwin, Dela Nai, Donat Shamba, James Kiarie","doi":"10.1007/s10742-020-00221-9","DOIUrl":null,"url":null,"abstract":"<p><p>An interrupted time series with a parallel control group (ITS-CG) design is a powerful quasi-experimental design commonly used to evaluate the effectiveness of an intervention, on accelerating uptake of useful public health products, and can be used in the presence of regularly collected data. This paper illustrates how a segmented Poisson model that utilizes general estimating equations (GEE) can be used for the ITS-CG study design to evaluate the effectiveness of a complex social accountability intervention on the level and rate of uptake of modern contraception. The intervention was gradually rolled-out over time to targeted intervention communities in Ghana and Tanzania, with control communities receiving standard of care, as per national guidelines. Two ITS GEE segmented regression models are proposed for evaluating of the uptake. The first, a two-segmented model, fits the data collected during pre-intervention and post-intervention excluding that collected during intervention roll-out. The second, a three-segmented model, fits all data including that collected during the roll-out. A much simpler difference-in-difference (DID) GEE Poisson regression model is also illustrated. Mathematical formulation of both ITS-segmented Poisson models and that of the DID Poisson model, interpretation and significance of resulting regression parameters, and accounting for different sources of variation and lags in intervention effect are respectively discussed. Strengths and limitations of these models are highlighted. Segmented ITS modelling remains valuable for studying the effect of intervention interruptions whether gradual changes, over time, in the level or trend in uptake of public health practices are attributed by the introduced intervention. <i>Trial Registration</i>: The Australian New Zealand Clinical Trials registry. <i>Trial registration number</i>: ACTRN12619000378123. <i>Trial Registration date</i>: 11-March-2019.</p>","PeriodicalId":45600,"journal":{"name":"Health Services and Outcomes Research Methodology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10742-020-00221-9","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Services and Outcomes Research Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10742-020-00221-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 6
Abstract
An interrupted time series with a parallel control group (ITS-CG) design is a powerful quasi-experimental design commonly used to evaluate the effectiveness of an intervention, on accelerating uptake of useful public health products, and can be used in the presence of regularly collected data. This paper illustrates how a segmented Poisson model that utilizes general estimating equations (GEE) can be used for the ITS-CG study design to evaluate the effectiveness of a complex social accountability intervention on the level and rate of uptake of modern contraception. The intervention was gradually rolled-out over time to targeted intervention communities in Ghana and Tanzania, with control communities receiving standard of care, as per national guidelines. Two ITS GEE segmented regression models are proposed for evaluating of the uptake. The first, a two-segmented model, fits the data collected during pre-intervention and post-intervention excluding that collected during intervention roll-out. The second, a three-segmented model, fits all data including that collected during the roll-out. A much simpler difference-in-difference (DID) GEE Poisson regression model is also illustrated. Mathematical formulation of both ITS-segmented Poisson models and that of the DID Poisson model, interpretation and significance of resulting regression parameters, and accounting for different sources of variation and lags in intervention effect are respectively discussed. Strengths and limitations of these models are highlighted. Segmented ITS modelling remains valuable for studying the effect of intervention interruptions whether gradual changes, over time, in the level or trend in uptake of public health practices are attributed by the introduced intervention. Trial Registration: The Australian New Zealand Clinical Trials registry. Trial registration number: ACTRN12619000378123. Trial Registration date: 11-March-2019.
期刊介绍:
The journal reflects the multidisciplinary nature of the field of health services and outcomes research. It addresses the needs of multiple, interlocking communities, including methodologists in statistics, econometrics, social and behavioral sciences; designers and analysts of health policy and health services research projects; and health care providers and policy makers who need to properly understand and evaluate the results of published research. The journal strives to enhance the level of methodologic rigor in health services and outcomes research and contributes to the development of methodologic standards in the field. In pursuing its main objective, the journal also provides a meeting ground for researchers from a number of traditional disciplines and fosters the development of new quantitative, qualitative, and mixed methods by statisticians, econometricians, health services researchers, and methodologists in other fields. Health Services and Outcomes Research Methodology publishes: Research papers on quantitative, qualitative, and mixed methods; Case Studies describing applications of quantitative and qualitative methodology in health services and outcomes research; Review Articles synthesizing and popularizing methodologic developments; Tutorials; Articles on computational issues and software reviews; Book reviews; and Notices. Special issues will be devoted to papers presented at important workshops and conferences.