Synergism between WLBU2 peptide and antibiotics against methicillin-resistant Staphylococcus aureus and extended-spectrum beta-lactamase-producing Enterobacter cloacae.

IF 2 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Journal of applied biomedicine Pub Date : 2021-03-01 Epub Date: 2021-01-18 DOI:10.32725/jab.2021.001
Lina Elsalem, Suhaila Al Sheboul, Ayat Khasawneh
{"title":"Synergism between WLBU2 peptide and antibiotics against methicillin-resistant Staphylococcus aureus and extended-spectrum beta-lactamase-producing Enterobacter cloacae.","authors":"Lina Elsalem,&nbsp;Suhaila Al Sheboul,&nbsp;Ayat Khasawneh","doi":"10.32725/jab.2021.001","DOIUrl":null,"url":null,"abstract":"<p><p>Infections caused by Methicillin-Resistant Staphylococcus aureus (MRSA) and Extended-Spectrum Beta-Lactamase (ESBL) producing Enterobacter cloacae are considered as major therapeutic challenge due to their multidrug-resistant (MDR) phenotype against conventional antibiotics. WLBU2 is an engineered cationic peptide with potent antimicrobial activity. This in-vitro study aimed to evaluate the effects of WLBU2 against clinical isolates of the aforementioned bacteria and assess whether synergistic effects can be achieved upon combination with conventional antibiotics. The minimum inhibitory concentrations (MICs) of antimicrobial agents against bacterial clinical isolates (n = 30/strain) were determined using the microbroth dilution assay. The minimum bactericidal concentrations (MBCs) of WLBU2 were determined from microbroth dilution (MICs) tests by subculturing to agar plates. MICs of WLBU2 were evaluated in the presence of physiological concentrations of salts including NaCl, CaCl2 and MgCl2. To identify bacterial resistance profile, MRSA were treated with Oxacillin, Erythromycin and Vancomycin, while Ceftazidime, Ceftriaxone, Ciprofloxacin and Imipenem were used against Enterobacter cloacae. Combination treatments of antibiotics and sub-inhibitory concentrations of WLBU2 were conducted when MICs indicated intermediate/resistant susceptibility. The MICs/MBCs of WLBU2 were identical for each respective bacteria with values of 0.78-6.25 μM and 1.5-12.5 μM against MRSA and Enterobacter cloacae, respectively. WLBU2 was found as salt resistant. Combination treatment showed that synergistic and additive effects were achieved in many isolates of MRSA and Enterobacter cloacae. Our data revealed that WLBU2 is a potent peptide with bactericidal activity. In addition, it demonstrated the selective advantage of WLBU2 as a potential therapeutic agent under physiological solutions. Our findings also support the combination of WLBU2 and conventional antibiotics with potential application for treatment of resistant bacteria.</p>","PeriodicalId":14912,"journal":{"name":"Journal of applied biomedicine","volume":"19 1","pages":"14-25"},"PeriodicalIF":2.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.32725/jab.2021.001","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 2

Abstract

Infections caused by Methicillin-Resistant Staphylococcus aureus (MRSA) and Extended-Spectrum Beta-Lactamase (ESBL) producing Enterobacter cloacae are considered as major therapeutic challenge due to their multidrug-resistant (MDR) phenotype against conventional antibiotics. WLBU2 is an engineered cationic peptide with potent antimicrobial activity. This in-vitro study aimed to evaluate the effects of WLBU2 against clinical isolates of the aforementioned bacteria and assess whether synergistic effects can be achieved upon combination with conventional antibiotics. The minimum inhibitory concentrations (MICs) of antimicrobial agents against bacterial clinical isolates (n = 30/strain) were determined using the microbroth dilution assay. The minimum bactericidal concentrations (MBCs) of WLBU2 were determined from microbroth dilution (MICs) tests by subculturing to agar plates. MICs of WLBU2 were evaluated in the presence of physiological concentrations of salts including NaCl, CaCl2 and MgCl2. To identify bacterial resistance profile, MRSA were treated with Oxacillin, Erythromycin and Vancomycin, while Ceftazidime, Ceftriaxone, Ciprofloxacin and Imipenem were used against Enterobacter cloacae. Combination treatments of antibiotics and sub-inhibitory concentrations of WLBU2 were conducted when MICs indicated intermediate/resistant susceptibility. The MICs/MBCs of WLBU2 were identical for each respective bacteria with values of 0.78-6.25 μM and 1.5-12.5 μM against MRSA and Enterobacter cloacae, respectively. WLBU2 was found as salt resistant. Combination treatment showed that synergistic and additive effects were achieved in many isolates of MRSA and Enterobacter cloacae. Our data revealed that WLBU2 is a potent peptide with bactericidal activity. In addition, it demonstrated the selective advantage of WLBU2 as a potential therapeutic agent under physiological solutions. Our findings also support the combination of WLBU2 and conventional antibiotics with potential application for treatment of resistant bacteria.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WLBU2肽与抗生素对耐甲氧西林金黄色葡萄球菌和广谱产β -内酰胺酶阴沟肠杆菌的协同作用
耐甲氧西林金黄色葡萄球菌(MRSA)和产生广谱β -内酰胺酶(ESBL)的阴沟肠杆菌引起的感染被认为是主要的治疗挑战,因为它们对传统抗生素具有多重耐药(MDR)表型。WLBU2是一种工程阳离子肽,具有较强的抗菌活性。本体外研究旨在评估WLBU2对上述细菌临床分离株的作用,并评估与常规抗生素联合使用是否能产生协同作用。采用微肉汤稀释法测定抗菌药物对临床分离细菌(n = 30/株)的最低抑菌浓度(mic)。WLBU2的最低杀菌浓度(MBCs)是通过琼脂平板继代培养的微肉汤稀释(mic)试验确定的。在生理盐浓度包括NaCl、CaCl2和MgCl2的存在下,评估了WLBU2的mic。为了确定细菌的耐药谱,分别用奥西林、红霉素和万古霉素治疗MRSA,用头孢他啶、头孢曲松、环丙沙星和亚胺培南治疗阴沟肠杆菌。当mic显示中等/耐药敏感性时,进行抗生素和WLBU2亚抑制浓度的联合治疗。WLBU2对MRSA和阴沟肠杆菌的mic /MBCs值分别为0.78 ~ 6.25 μM和1.5 ~ 12.5 μM。发现WLBU2具有耐盐性。联合治疗表明,许多MRSA和阴沟肠杆菌分离株具有协同和加性作用。我们的数据显示,WLBU2是一种有效的肽,具有杀菌活性。此外,在生理溶液下,WLBU2作为一种潜在的治疗剂具有选择性优势。我们的研究结果也支持WLBU2与传统抗生素的联合使用,在治疗耐药细菌方面具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of applied biomedicine
Journal of applied biomedicine PHARMACOLOGY & PHARMACY-
CiteScore
2.40
自引率
7.70%
发文量
13
审稿时长
>12 weeks
期刊介绍: Journal of Applied Biomedicine promotes translation of basic biomedical research into clinical investigation, conversion of clinical evidence into practice in all medical fields, and publication of new ideas for conquering human health problems across disciplines. Providing a unique perspective, this international journal publishes peer-reviewed original papers and reviews offering a sensible transfer of basic research to applied clinical medicine. Journal of Applied Biomedicine covers the latest developments in various fields of biomedicine with special attention to cardiology and cardiovascular diseases, genetics, immunology, environmental health, toxicology, neurology and oncology as well as multidisciplinary studies. The views of experts on current advances in nanotechnology and molecular/cell biology will be also considered for publication as long as they have a direct clinical impact on human health. The journal does not accept basic science research or research without significant clinical implications. Manuscripts with innovative ideas and approaches that bridge different fields and show clear perspectives for clinical applications are considered with top priority.
期刊最新文献
Anti-NMDAR1 antibody impairs dendritic branching in immature cultured neurons. Astragaloside IV confronts amyloid-beta-induced astrocyte senescence via hsp90aa1. In vitro biological activities of Calamintha nepeta L. aqueous extracts. Olfactory event-related potentials (OERPs) and trigeminal event-related potentials (TERPs) in subjects after Covid-19 infection: single-center prospective study. Salivary glands - a new site of Helicobacter pylori occurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1