Case not closed: the mystery of the origin of the carpel.

IF 4.1 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY Evodevo Pub Date : 2021-12-15 DOI:10.1186/s13227-021-00184-z
Beatriz Gonçalves
{"title":"Case not closed: the mystery of the origin of the carpel.","authors":"Beatriz Gonçalves","doi":"10.1186/s13227-021-00184-z","DOIUrl":null,"url":null,"abstract":"<p><p>The carpel is a fascinating structure that plays a critical role in flowering plant reproduction and contributed greatly to the evolutionary success and diversification of flowering plants. The remarkable feature of the carpel is that it is a closed structure that envelopes the ovules and after fertilization develops into the fruit which protects, helps disperse, and supports seed development into a new plant. Nearly all plant-based foods are either derived from a flowering plant or are a direct product of the carpel. Given its importance it's no surprise that plant and evolutionary biologists have been trying to explain the origin of the carpel for a long time. Before carpel evolution seeds were produced on open leaf-like structures that are exposed to the environment. When the carpel evolved in the stem lineage of flowering plants, seeds became protected within its closed structure. The evolutionary transition from that open precursor to the closed carpel remains one of the greatest mysteries of plant evolution. In recent years, we have begun to complete a picture of what the first carpels might have looked like. On the other hand, there are still many gaps in our understanding of what the precursor of the carpel looked like and what changes to its developmental mechanisms allowed for this evolutionary transition. This review aims to present an overview of existing theories of carpel evolution with a particular emphasis on those that account for the structures that preceded the carpel and/or present testable developmental hypotheses. In the second part insights from the development and evolution of diverse plant organs are gathered to build a developmental hypothesis for the evolutionary transition from a hypothesized laminar open structure to the closed structure of the carpel.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"12 1","pages":"14"},"PeriodicalIF":4.1000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672599/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evodevo","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13227-021-00184-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

The carpel is a fascinating structure that plays a critical role in flowering plant reproduction and contributed greatly to the evolutionary success and diversification of flowering plants. The remarkable feature of the carpel is that it is a closed structure that envelopes the ovules and after fertilization develops into the fruit which protects, helps disperse, and supports seed development into a new plant. Nearly all plant-based foods are either derived from a flowering plant or are a direct product of the carpel. Given its importance it's no surprise that plant and evolutionary biologists have been trying to explain the origin of the carpel for a long time. Before carpel evolution seeds were produced on open leaf-like structures that are exposed to the environment. When the carpel evolved in the stem lineage of flowering plants, seeds became protected within its closed structure. The evolutionary transition from that open precursor to the closed carpel remains one of the greatest mysteries of plant evolution. In recent years, we have begun to complete a picture of what the first carpels might have looked like. On the other hand, there are still many gaps in our understanding of what the precursor of the carpel looked like and what changes to its developmental mechanisms allowed for this evolutionary transition. This review aims to present an overview of existing theories of carpel evolution with a particular emphasis on those that account for the structures that preceded the carpel and/or present testable developmental hypotheses. In the second part insights from the development and evolution of diverse plant organs are gathered to build a developmental hypothesis for the evolutionary transition from a hypothesized laminar open structure to the closed structure of the carpel.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
案件尚未结案:心皮起源之谜。
心皮是一种迷人的结构,在开花植物的繁殖中起着关键作用,对开花植物的进化成功和多样化做出了巨大贡献。心皮的显著特征是,它是一个封闭的结构,包裹着胚珠,受精后发育成果实,保护、帮助分散并支持种子发育成新植物。几乎所有的植物性食物都是从开花植物中提取的,或者是心皮的直接产物。鉴于其重要性,植物和进化生物学家长期以来一直试图解释心皮的起源也就不足为奇了。在心皮进化之前,种子是在暴露于环境中的开放的叶子状结构上产生的。当心皮在开花植物的茎系中进化时,种子在其封闭的结构中受到保护。从开放的前体到封闭的心皮的进化转变仍然是植物进化的最大谜团之一。近年来,我们已经开始完成第一批心皮的样子。另一方面,我们对心皮的前体是什么样子以及其发育机制的变化允许这种进化转变的理解仍然存在许多差距。这篇综述旨在概述现有的心皮进化理论,特别强调那些解释心皮之前的结构和/或提出可测试的发展假设的理论。在第二部分中,收集了来自不同植物器官发育和进化的见解,为心皮从假设的层状开放结构到闭合结构的进化过渡建立了一个发育假说。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Evodevo
Evodevo EVOLUTIONARY BIOLOGY-DEVELOPMENTAL BIOLOGY
CiteScore
7.50
自引率
0.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: EvoDevo publishes articles on a broad range of topics associated with the translation of genotype to phenotype in a phylogenetic context. Understanding the history of life, the evolution of novelty and the generation of form, whether through embryogenesis, budding, or regeneration are amongst the greatest challenges in biology. We support the understanding of these processes through the many complementary approaches that characterize the field of evo-devo. The focus of the journal is on research that promotes understanding of the pattern and process of morphological evolution. All articles that fulfill this aim will be welcome, in particular: evolution of pattern; formation comparative gene function/expression; life history evolution; homology and character evolution; comparative genomics; phylogenetics and palaeontology
期刊最新文献
Conservation of the dehiscence zone gene regulatory network in dicots and the role of the SEEDSTICK ortholog of California poppy (Eschscholzia californica) in fruit development. The evolution of cephalic fins in manta rays and their relatives: functional evidence for initiation of domain splitting and modulation of the Wnt signaling pathway in the pectoral fin AER of the little skate. Expression of distal limb patterning genes in Hypsibius exemplaris indicate regionalization and suggest distal identity of tardigrade legs. Early embryonic development of the German cockroach Blattella germanica. Periderm fate and independence of tooth formation are conserved across osteichthyans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1