Analytical methodologies for oxidized organic compounds in the atmosphere†

IF 4.3 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL Environmental Science: Processes & Impacts Pub Date : 2023-07-26 DOI:10.1039/D3EM00163F
Aleksi Tiusanen, Jose Ruiz-Jimenez, Kari Hartonen and Susanne K. Wiedmer
{"title":"Analytical methodologies for oxidized organic compounds in the atmosphere†","authors":"Aleksi Tiusanen, Jose Ruiz-Jimenez, Kari Hartonen and Susanne K. Wiedmer","doi":"10.1039/D3EM00163F","DOIUrl":null,"url":null,"abstract":"<p >Oxidized compounds in the atmosphere can occur as emitted primary compounds or as secondary products when volatile emitted precursors react with various oxidants. Due to the presence of polar functional groups, their vapor pressures decrease, and they condense onto small particles. Thereby, they have an effect on climate change by the formation of clouds and scattering solar radiation. The particles and oxidized compounds themselves can cause serious health problems when inhaled. Therefore, it is of utmost importance to study oxidized compounds in the atmosphere. Much ongoing research is focused on the discovery of new oxidized substances and on the evaluation of their sources and factors influencing their formation. Monitoring biogenic and anthropogenic primary oxidized compounds or secondary oxidized products in chamber experiments or field campaigns is common. New discoveries have been reported, including various oxidized compounds and a new group of compounds called highly oxidized organic molecules (HOMs). Analytics of HOMs are mainly focused on chromatography and high-resolution mass spectrometry employing chemical ionization for identifying and quantifying compounds at low concentrations. Oxidized compounds can also be monitored by spectrophotometric methods in which the determinations of total amounts are based on functional groups. This review highlights recent findings on oxidized organic compounds in the atmosphere and analytical methodologies used for their detection and quantification. The discussion includes gas and liquid chromatographic methods, sampling, extraction, concentration, and derivatization procedures involved, as well as mass spectrometric and spectrophotometric methods.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 8","pages":" 1263-1287"},"PeriodicalIF":4.3000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/em/d3em00163f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/em/d3em00163f","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Oxidized compounds in the atmosphere can occur as emitted primary compounds or as secondary products when volatile emitted precursors react with various oxidants. Due to the presence of polar functional groups, their vapor pressures decrease, and they condense onto small particles. Thereby, they have an effect on climate change by the formation of clouds and scattering solar radiation. The particles and oxidized compounds themselves can cause serious health problems when inhaled. Therefore, it is of utmost importance to study oxidized compounds in the atmosphere. Much ongoing research is focused on the discovery of new oxidized substances and on the evaluation of their sources and factors influencing their formation. Monitoring biogenic and anthropogenic primary oxidized compounds or secondary oxidized products in chamber experiments or field campaigns is common. New discoveries have been reported, including various oxidized compounds and a new group of compounds called highly oxidized organic molecules (HOMs). Analytics of HOMs are mainly focused on chromatography and high-resolution mass spectrometry employing chemical ionization for identifying and quantifying compounds at low concentrations. Oxidized compounds can also be monitored by spectrophotometric methods in which the determinations of total amounts are based on functional groups. This review highlights recent findings on oxidized organic compounds in the atmosphere and analytical methodologies used for their detection and quantification. The discussion includes gas and liquid chromatographic methods, sampling, extraction, concentration, and derivatization procedures involved, as well as mass spectrometric and spectrophotometric methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大气中氧化有机化合物的分析方法†
大气中的氧化化合物可以作为排放的初级化合物或当挥发性排放前体与各种氧化剂反应时作为次级产物出现。由于极性官能团的存在,它们的蒸气压降低,并凝结成小颗粒。因此,它们通过形成云和散射太阳辐射对气候变化产生影响。吸入颗粒物和氧化化合物本身会导致严重的健康问题。因此,研究大气中的氧化化合物具有极其重要的意义。许多正在进行的研究集中在发现新的氧化物质以及评价其来源和影响其形成的因素。在室内实验或野外活动中监测生物源和人为的初级氧化化合物或二级氧化产物是很常见的。新的发现被报道,包括各种氧化化合物和一组新的化合物称为高氧化有机分子(HOMs)。HOMs的分析主要集中在色谱法和高分辨率质谱法,采用化学电离法对低浓度的化合物进行鉴定和定量。氧化化合物也可以通过分光光度法监测,其中基于官能团的总量测定。这篇综述重点介绍了大气中氧化有机化合物的最新发现以及用于检测和定量的分析方法。讨论包括气相色谱和液相色谱方法,采样,提取,浓缩,衍生化程序所涉及的,以及质谱和分光光度法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Science: Processes & Impacts
Environmental Science: Processes & Impacts CHEMISTRY, ANALYTICAL-ENVIRONMENTAL SCIENCES
CiteScore
9.50
自引率
3.60%
发文量
202
审稿时长
1 months
期刊介绍: Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.
期刊最新文献
Correction: Exploring the variability of PFAS in urban sewage: a comparison of emissions in commercial versus municipal urban areas. Validation of a laboratory spray generation system and its use in a comparative study of hexamethylene diisocyanate (HDI) evaluation methods. Fluorinated aromatic PBCTF and 6:2 diPAP in bridge and traffic paints. Sorption of metal ions onto PET-derived microplastic fibres. Reduction of hexavalent chromium by compost-derived dissolved organic matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1