{"title":"[Forefront of AI Applications for COVID-19 Imaging Diagnosis].","authors":"Hidetaka Arimura, Takahiro Iwasaki","doi":"10.11323/jjmp.41.3_82","DOIUrl":null,"url":null,"abstract":"<p><p>The intra- and inter-observer variability in diagnosis of thoracic CT images may affect the diagnosis of COVID-19. Therefore, several studies have been reported to develop artificial intelligence (AI) approaches using deep learning (DL) and radiomics technologies. The difference between them is automatic feature extraction (DL) and hand-crafted one (radiomics). The advantages of the AI-based imaging approaches for the COVID-19 are fast throughput, non-invasion, quantification, and integration of PCR results, CT findings, and clinical information. To the best of my knowledge, three types of the AI approaches have been studied: detection, severity differentiation, and prognosis prediction of COVID-19. AI technologies on assessment of severity/prediction of prognosis for COVID-19 may be more crucial than detection of COVID-19 pneumonia after COVID-19 becomes one of common diseases.</p>","PeriodicalId":13394,"journal":{"name":"Igaku butsuri : Nihon Igaku Butsuri Gakkai kikanshi = Japanese journal of medical physics : an official journal of Japan Society of Medical Physics","volume":"41 3","pages":"82-86"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Igaku butsuri : Nihon Igaku Butsuri Gakkai kikanshi = Japanese journal of medical physics : an official journal of Japan Society of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11323/jjmp.41.3_82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The intra- and inter-observer variability in diagnosis of thoracic CT images may affect the diagnosis of COVID-19. Therefore, several studies have been reported to develop artificial intelligence (AI) approaches using deep learning (DL) and radiomics technologies. The difference between them is automatic feature extraction (DL) and hand-crafted one (radiomics). The advantages of the AI-based imaging approaches for the COVID-19 are fast throughput, non-invasion, quantification, and integration of PCR results, CT findings, and clinical information. To the best of my knowledge, three types of the AI approaches have been studied: detection, severity differentiation, and prognosis prediction of COVID-19. AI technologies on assessment of severity/prediction of prognosis for COVID-19 may be more crucial than detection of COVID-19 pneumonia after COVID-19 becomes one of common diseases.