Genome-Wide Analysis of the Auxin/Indoleacetic Acid Gene Family and Response to Indole-3-Acetic Acid Stress in Tartary Buckwheat (Fagopyrum tataricum).
Fan Yang, Xiuxia Zhang, Ruifeng Tian, Liwei Zhu, Fang Liu, Qingfu Chen, Xuanjie Shi, Dongao Huo
{"title":"Genome-Wide Analysis of the Auxin/Indoleacetic Acid Gene Family and Response to Indole-3-Acetic Acid Stress in Tartary Buckwheat (<i>Fagopyrum tataricum</i>).","authors":"Fan Yang, Xiuxia Zhang, Ruifeng Tian, Liwei Zhu, Fang Liu, Qingfu Chen, Xuanjie Shi, Dongao Huo","doi":"10.1155/2021/3102399","DOIUrl":null,"url":null,"abstract":"<p><p>Auxin/indoleacetic acid (Aux/IAA) family genes respond to the hormone auxin, which have been implicated in the regulation of multiple biological processes. In this study, all 25 Aux/IAA family genes were identified in Tartary buckwheat (<i>Fagopyrum tataricum</i>) by a reiterative database search and manual annotation. Our study provided comprehensive information of Aux/IAA family genes in buckwheat, including gene structures, chromosome locations, phylogenetic relationships, and expression patterns. Aux/IAA family genes were nonuniformly distributed in the buckwheat chromosomes and divided into seven groups by phylogenetic analysis. Aux/IAA family genes maintained a certain correlation and a certain species-specificity through evolutionary analysis with <i>Arabidopsis</i> and other grain crops. In addition, all Aux/IAA genes showed a complex response pattern under treatment of indole-3-acetic acid (IAA). These results provide valuable reference information for dissecting function and molecular mechanism of Aux/IAA family genes in buckwheat.</p>","PeriodicalId":13988,"journal":{"name":"International Journal of Genomics","volume":"2021 ","pages":"3102399"},"PeriodicalIF":2.6000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8564212/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2021/3102399","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Auxin/indoleacetic acid (Aux/IAA) family genes respond to the hormone auxin, which have been implicated in the regulation of multiple biological processes. In this study, all 25 Aux/IAA family genes were identified in Tartary buckwheat (Fagopyrum tataricum) by a reiterative database search and manual annotation. Our study provided comprehensive information of Aux/IAA family genes in buckwheat, including gene structures, chromosome locations, phylogenetic relationships, and expression patterns. Aux/IAA family genes were nonuniformly distributed in the buckwheat chromosomes and divided into seven groups by phylogenetic analysis. Aux/IAA family genes maintained a certain correlation and a certain species-specificity through evolutionary analysis with Arabidopsis and other grain crops. In addition, all Aux/IAA genes showed a complex response pattern under treatment of indole-3-acetic acid (IAA). These results provide valuable reference information for dissecting function and molecular mechanism of Aux/IAA family genes in buckwheat.
期刊介绍:
International Journal of Genomics is a peer-reviewed, Open Access journal that publishes research articles as well as review articles in all areas of genome-scale analysis. Topics covered by the journal include, but are not limited to: bioinformatics, clinical genomics, disease genomics, epigenomics, evolutionary genomics, functional genomics, genome engineering, and synthetic genomics.