{"title":"Environmental risk assessment of transgenic miraculin-accumulating tomato in a confined field trial in Japan.","authors":"Kyoko Hiwasa-Tanase, Tsubasa Yano, Tatsuya Kon, Teruhiko Terakawa, Hiroshi Ezura","doi":"10.5511/plantbiotechnology.21.1021a","DOIUrl":null,"url":null,"abstract":"<p><p>The commercial use of genetically modified (GM) crops requires prior assessment of the risks to the environment when these crops are grown in the field or distributed. Assessments protocols vary across countries and GM crop events, but there is a common need to assess environmental biosafety. In this study, we conducted an environmental risk assessment in a confined field of GM tomato plants that can produce miraculin, a taste-altering protein that causes sour tastes to be perceived as sweet, for practical use in Japan. The evaluation was conducted for 1) competitiveness (the ability to compete with wild plants for nutrients, sunlight, and growing areas and prevent their growth) and 2) the production of toxic substances (the ability to produce substances that interfere with the habitat and growth of wild plants, animals, and microorganisms). Investigations of plant morphology and growth characteristics as well as tolerance to low temperature during early growth and overwintering for assessment endpoints related to competitiveness showed no biologically meaningful difference between GM tomato and non-GM tomato. In addition, harmful substances in plant residues and root secretions were assessed by the plow-in method, succeeding crop test and soil microflora tests, and it was determined that GM tomato does not exhibit an increase in harmful substances. Based on these results, it was concluded that GM miraculin-accumulating tomato is comparable to conventional tomato and is unlikely to have unintended adverse effects in the natural environment of Japan.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761588/pdf/plantbiotechnology-38-4-21.1021a.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5511/plantbiotechnology.21.1021a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
The commercial use of genetically modified (GM) crops requires prior assessment of the risks to the environment when these crops are grown in the field or distributed. Assessments protocols vary across countries and GM crop events, but there is a common need to assess environmental biosafety. In this study, we conducted an environmental risk assessment in a confined field of GM tomato plants that can produce miraculin, a taste-altering protein that causes sour tastes to be perceived as sweet, for practical use in Japan. The evaluation was conducted for 1) competitiveness (the ability to compete with wild plants for nutrients, sunlight, and growing areas and prevent their growth) and 2) the production of toxic substances (the ability to produce substances that interfere with the habitat and growth of wild plants, animals, and microorganisms). Investigations of plant morphology and growth characteristics as well as tolerance to low temperature during early growth and overwintering for assessment endpoints related to competitiveness showed no biologically meaningful difference between GM tomato and non-GM tomato. In addition, harmful substances in plant residues and root secretions were assessed by the plow-in method, succeeding crop test and soil microflora tests, and it was determined that GM tomato does not exhibit an increase in harmful substances. Based on these results, it was concluded that GM miraculin-accumulating tomato is comparable to conventional tomato and is unlikely to have unintended adverse effects in the natural environment of Japan.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.