tRNA modification profiles in obligate and moderate thermophilic bacilli.

IF 2.6 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Extremophiles Pub Date : 2022-02-05 DOI:10.1007/s00792-022-01258-z
Hovik Panosyan, Franziska R Traube, Caterina Brandmayr, Mirko Wagner, Thomas Carell
{"title":"tRNA modification profiles in obligate and moderate thermophilic bacilli.","authors":"Hovik Panosyan,&nbsp;Franziska R Traube,&nbsp;Caterina Brandmayr,&nbsp;Mirko Wagner,&nbsp;Thomas Carell","doi":"10.1007/s00792-022-01258-z","DOIUrl":null,"url":null,"abstract":"<p><p>Transfer RNAs (tRNAs) are the most ancient RNA molecules in the cell, modification pattern of which is linked to phylogeny. The aim of this study was to determine the tRNA modification profiles of obligate (Anoxybacillus, Geobacillus, Paragebacillus) and moderate (Bacillus, Brevibacillus, Ureibacillus, Paenibacillus) thermophilic aerobic bacilli strains to find out its linkage to phylogenetic variations between species. LC-MS was applied for the quantification of modified nucleosides using both natural and isotopically labeled standards. The presence of m<sup>2</sup>A and m<sup>7</sup>G modifications at high levels was determined in all species. Relatively high level of i<sup>6</sup>A and m<sup>5</sup>C modification was observed for Paenibacillus and Ureibacillus, respectively. The lowest level of Cm modification was found in Bacillus. The modification ms<sup>2</sup>i<sup>6</sup>A and m<sup>1</sup>G were absent in Brevibacillus and Ureibacillus, respectively, while modifications Am and m<sup>2</sup><sub>2</sub>G were observed only for Ureibacillus. While both obligate and moderate thermophilic species contain Gm, m<sup>1</sup>G and ms<sup>2</sup>i<sup>6</sup>A modifications, large quantities of them (especially Gm and ms<sup>2</sup>i<sup>6</sup>A modification) were detected in obligate thermophilic ones (Geobacillus, Paragebacillus and Anoxybacillus). The collective set of modified tRNA bases is genus-specific and linked to the phylogeny of bacilli. In addition, the dataset could be applied to distinguish obligate thermophilic bacilli from moderate ones.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":"26 1","pages":"11"},"PeriodicalIF":2.6000,"publicationDate":"2022-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8818000/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extremophiles","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00792-022-01258-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Transfer RNAs (tRNAs) are the most ancient RNA molecules in the cell, modification pattern of which is linked to phylogeny. The aim of this study was to determine the tRNA modification profiles of obligate (Anoxybacillus, Geobacillus, Paragebacillus) and moderate (Bacillus, Brevibacillus, Ureibacillus, Paenibacillus) thermophilic aerobic bacilli strains to find out its linkage to phylogenetic variations between species. LC-MS was applied for the quantification of modified nucleosides using both natural and isotopically labeled standards. The presence of m2A and m7G modifications at high levels was determined in all species. Relatively high level of i6A and m5C modification was observed for Paenibacillus and Ureibacillus, respectively. The lowest level of Cm modification was found in Bacillus. The modification ms2i6A and m1G were absent in Brevibacillus and Ureibacillus, respectively, while modifications Am and m22G were observed only for Ureibacillus. While both obligate and moderate thermophilic species contain Gm, m1G and ms2i6A modifications, large quantities of them (especially Gm and ms2i6A modification) were detected in obligate thermophilic ones (Geobacillus, Paragebacillus and Anoxybacillus). The collective set of modified tRNA bases is genus-specific and linked to the phylogeny of bacilli. In addition, the dataset could be applied to distinguish obligate thermophilic bacilli from moderate ones.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
专性和中度嗜热杆菌的tRNA修饰谱。
转移RNA (Transfer RNA, trna)是细胞中最古老的RNA分子,其修饰模式与系统发育有关。本研究的目的是测定专性(无氧杆菌、地杆菌、副芽孢杆菌)和中度(芽孢杆菌、短芽孢杆菌、Ureibacillus、Paenibacillus)嗜热需氧杆菌菌株的tRNA修饰谱,以找出其与种间系统发育变异的联系。采用LC-MS对天然和同位素标记的核苷进行定量分析。m2A和m7G的高水平修饰在所有物种中都存在。在Paenibacillus和Ureibacillus中分别观察到较高的i6A和m5C修饰水平。芽孢杆菌的Cm修饰水平最低。ms2i6A和m1G分别在短芽孢杆菌和Ureibacillus中不存在,而Am和m22G仅在Ureibacillus中存在。虽然专性和中度嗜热菌都含有Gm、m1G和ms2i6A修饰,但在专性嗜热菌(地杆菌、副芽孢杆菌和无氧芽孢杆菌)中检测到大量的转基因和ms2i6A修饰。这组修饰的tRNA碱基是属特异性的,与杆菌的系统发育有关。此外,该数据集可用于区分专性嗜热杆菌和中等嗜热杆菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Extremophiles
Extremophiles 生物-生化与分子生物学
CiteScore
6.80
自引率
6.90%
发文量
28
审稿时长
2 months
期刊介绍: Extremophiles features original research articles, reviews, and method papers on the biology, molecular biology, structure, function, and applications of microbial life at high or low temperature, pressure, acidity, alkalinity, salinity, or desiccation; or in the presence of organic solvents, heavy metals, normally toxic substances, or radiation.
期刊最新文献
Mechanism of decolorization and degradation of direct brown D3G by a halo-thermophilic consortium. Insights into the dynamics and evolution of Rummeliibacillus stabekisii prophages in extreme environments: from Antarctic soil to spacecraft floors. Unraveling the effects of polyhydroxyalkanoates accumulation in Pseudomonas extremaustralis growth and survival under different pH conditions. Variations on a theme: non-canonical DUF3494 ice-binding proteins. Characterization of a family IV esterase from extremely halophilic archaeon Haloarcula japonica.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1