{"title":"SARS-CoV-2-Mediated Neuropathogenesis, Deterioration of Hippocampal Neurogenesis and Dementia.","authors":"Risna K Radhakrishnan, Mahesh Kandasamy","doi":"10.1177/15333175221078418","DOIUrl":null,"url":null,"abstract":"<p><p>A significant portion of COVID-19 patients and survivors display marked clinical signs of neurocognitive impairments. SARS-CoV-2-mediated peripheral cytokine storm and its neurotropism appear to elicit the activation of glial cells in the brain proceeding to neuroinflammation. While adult neurogenesis has been identified as a key cellular basis of cognitive functions, neuroinflammation-induced aberrant neuroregenerative plasticity in the hippocampus has been implicated in progressive memory loss in ageing and brain disorders. Notably, recent histological studies of post-mortem human and experimental animal brains indicate that SARS-CoV-2 infection impairs neurogenic process in the hippocampus of the brain due to neuroinflammation. Considering the facts, this article describes the prominent neuropathogenic characteristics and neurocognitive impairments in COVID-19 and emphasizes a viewpoint that neuroinflammation-mediated deterioration of hippocampal neurogenesis could contribute to the onset and progression of dementia in COVID-19. Thus, it necessitates the unmet need for regenerative medicine for the effective management of neurocognitive deficits in COVID-19.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"15333175221078418"},"PeriodicalIF":4.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10581113/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15333175221078418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
A significant portion of COVID-19 patients and survivors display marked clinical signs of neurocognitive impairments. SARS-CoV-2-mediated peripheral cytokine storm and its neurotropism appear to elicit the activation of glial cells in the brain proceeding to neuroinflammation. While adult neurogenesis has been identified as a key cellular basis of cognitive functions, neuroinflammation-induced aberrant neuroregenerative plasticity in the hippocampus has been implicated in progressive memory loss in ageing and brain disorders. Notably, recent histological studies of post-mortem human and experimental animal brains indicate that SARS-CoV-2 infection impairs neurogenic process in the hippocampus of the brain due to neuroinflammation. Considering the facts, this article describes the prominent neuropathogenic characteristics and neurocognitive impairments in COVID-19 and emphasizes a viewpoint that neuroinflammation-mediated deterioration of hippocampal neurogenesis could contribute to the onset and progression of dementia in COVID-19. Thus, it necessitates the unmet need for regenerative medicine for the effective management of neurocognitive deficits in COVID-19.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.