Colin Griesbach, Benjamin Säfken, Elisabeth Waldmann
{"title":"Gradient boosting for linear mixed models.","authors":"Colin Griesbach, Benjamin Säfken, Elisabeth Waldmann","doi":"10.1515/ijb-2020-0136","DOIUrl":null,"url":null,"abstract":"<p><p>Gradient boosting from the field of statistical learning is widely known as a powerful framework for estimation and selection of predictor effects in various regression models by adapting concepts from classification theory. Current boosting approaches also offer methods accounting for random effects and thus enable prediction of mixed models for longitudinal and clustered data. However, these approaches include several flaws resulting in unbalanced effect selection with falsely induced shrinkage and a low convergence rate on the one hand and biased estimates of the random effects on the other hand. We therefore propose a new boosting algorithm which explicitly accounts for the random structure by excluding it from the selection procedure, properly correcting the random effects estimates and in addition providing likelihood-based estimation of the random effects variance structure. The new algorithm offers an organic and unbiased fitting approach, which is shown via simulations and data examples.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2020-0136","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2020-0136","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8
Abstract
Gradient boosting from the field of statistical learning is widely known as a powerful framework for estimation and selection of predictor effects in various regression models by adapting concepts from classification theory. Current boosting approaches also offer methods accounting for random effects and thus enable prediction of mixed models for longitudinal and clustered data. However, these approaches include several flaws resulting in unbalanced effect selection with falsely induced shrinkage and a low convergence rate on the one hand and biased estimates of the random effects on the other hand. We therefore propose a new boosting algorithm which explicitly accounts for the random structure by excluding it from the selection procedure, properly correcting the random effects estimates and in addition providing likelihood-based estimation of the random effects variance structure. The new algorithm offers an organic and unbiased fitting approach, which is shown via simulations and data examples.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.