General Control Nonrepressed Protein 5 Modulates Odontogenic Differentiation Through NF-κB Pathway in Tumor Necrosis Factor-α-Mediated Impaired Human Dental Pulp Stem Cells.

IF 1.2 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Cellular reprogramming Pub Date : 2022-04-01 Epub Date: 2022-02-16 DOI:10.1089/cell.2021.0113
Jingwen Xiao, Ya Zheng, Wei Zhang, Ye Zhang, Peipei Cao, Yi Liang, Liuliu Bao, Suping Shi, Xingmei Feng
{"title":"General Control Nonrepressed Protein 5 Modulates Odontogenic Differentiation Through NF-κB Pathway in Tumor Necrosis Factor-α-Mediated Impaired Human Dental Pulp Stem Cells.","authors":"Jingwen Xiao,&nbsp;Ya Zheng,&nbsp;Wei Zhang,&nbsp;Ye Zhang,&nbsp;Peipei Cao,&nbsp;Yi Liang,&nbsp;Liuliu Bao,&nbsp;Suping Shi,&nbsp;Xingmei Feng","doi":"10.1089/cell.2021.0113","DOIUrl":null,"url":null,"abstract":"<p><p>Dental pulp stem cells (DPSCs) from pulpitis patients showed defective osteogenic differentiation. However, as the most well-studied histone acetyltransferase, the impaired general control nonrepressed protein 5 (GCN5) plays essential roles in various developmental processes. The aim of this study was to investigate the effect of GCN5 on DPSCs odontogenic differentiation. The healthy dental pulp tissues were obtained from the extracted impacted third molar of patients with the informed consent. DPSCs were treated with a high concentration of tumor necrosis factor-alpha (TNF-α) (100 ng/mL) and odontogenic differentiation-related gene and GCN5 protein level by Western blot analysis. Proliferation of the DPSCs was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Immunofluorescence staining detected GCN5 and NF-κB signaling for p-p65. The mechanism of GCN5 regulating odontogenic differentiation of DPSCs was determined by small interfering RNA analysis. Our data suggested that TNF-α can significantly reduce mineralization and the expression of dentin matrix acidic phosphoprotein 1 and dentin sialophosphoprotein at higher concentration (100 ng/mL). Meanwhile, it showed that the inflammation in microenvironment resulted in a downregulation of GCN5 expression and GCN5 knockdown caused decreased odontogenic differentiation of DPSCs was also found. In addition, the knockdown of GCN5 increased the expression of phosphorylation of p65, thus activating NF-κB pathway of DPSCs. Meanwhile, NF-κB pathway inhibitor pyrrolidinedithiocarbamic acid reversed the siGCN5 decreased odontogenic differentiation of DPSCs. Altogether, our findings indicated that in inflammatory microenvironments GCN5 plays a protective role in pulpitis impaired odontogenic differentiation of DPSCs by activating NF-κB pathway, which may provide a potential approach to dentin regeneration.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular reprogramming","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cell.2021.0113","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Dental pulp stem cells (DPSCs) from pulpitis patients showed defective osteogenic differentiation. However, as the most well-studied histone acetyltransferase, the impaired general control nonrepressed protein 5 (GCN5) plays essential roles in various developmental processes. The aim of this study was to investigate the effect of GCN5 on DPSCs odontogenic differentiation. The healthy dental pulp tissues were obtained from the extracted impacted third molar of patients with the informed consent. DPSCs were treated with a high concentration of tumor necrosis factor-alpha (TNF-α) (100 ng/mL) and odontogenic differentiation-related gene and GCN5 protein level by Western blot analysis. Proliferation of the DPSCs was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Immunofluorescence staining detected GCN5 and NF-κB signaling for p-p65. The mechanism of GCN5 regulating odontogenic differentiation of DPSCs was determined by small interfering RNA analysis. Our data suggested that TNF-α can significantly reduce mineralization and the expression of dentin matrix acidic phosphoprotein 1 and dentin sialophosphoprotein at higher concentration (100 ng/mL). Meanwhile, it showed that the inflammation in microenvironment resulted in a downregulation of GCN5 expression and GCN5 knockdown caused decreased odontogenic differentiation of DPSCs was also found. In addition, the knockdown of GCN5 increased the expression of phosphorylation of p65, thus activating NF-κB pathway of DPSCs. Meanwhile, NF-κB pathway inhibitor pyrrolidinedithiocarbamic acid reversed the siGCN5 decreased odontogenic differentiation of DPSCs. Altogether, our findings indicated that in inflammatory microenvironments GCN5 plays a protective role in pulpitis impaired odontogenic differentiation of DPSCs by activating NF-κB pathway, which may provide a potential approach to dentin regeneration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一般控制非抑制蛋白5通过NF-κB途径调节肿瘤坏死因子-α-介导的人牙髓干细胞成牙分化。
牙髓炎患者的牙髓干细胞(DPSCs)表现出成骨分化缺陷。然而,作为研究最多的组蛋白乙酰转移酶,受损的一般控制非抑制蛋白5 (GCN5)在各种发育过程中发挥着重要作用。本研究旨在探讨GCN5对DPSCs成牙分化的影响。在知情同意的情况下,从拔除的阻生第三磨牙中获得健康的牙髓组织。Western blot检测高浓度肿瘤坏死因子α (TNF-α) (100 ng/mL)和牙源性分化相关基因及GCN5蛋白水平对DPSCs的影响。采用3-(4,5-二甲基噻唑-2-基)-2,5-二苯基溴化四唑(MTT)法评估DPSCs的增殖情况。免疫荧光染色检测GCN5和NF-κB信号通路对p-p65的影响。通过小干扰RNA分析确定GCN5调控DPSCs成牙分化的机制。结果表明,TNF-α在较高浓度(100 ng/mL)可显著降低牙本质基质酸性磷蛋白1和牙本质唾液磷蛋白的矿化和表达。同时发现微环境炎症导致GCN5表达下调,GCN5敲低导致DPSCs成牙分化减弱。此外,GCN5的下调增加了p65磷酸化的表达,从而激活了DPSCs的NF-κB通路。同时,NF-κB通路抑制剂吡啶二硫代氨基甲酸逆转siGCN5诱导的DPSCs成牙分化。总之,我们的研究结果表明,在炎症微环境中,GCN5通过激活NF-κB通路,在牙髓炎受损的DPSCs成牙分化中发挥保护作用,这可能为牙本质再生提供了一种潜在的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellular reprogramming
Cellular reprogramming CELL & TISSUE ENGINEERING-BIOTECHNOLOGY & APPLIED MICROBIOLOGY
CiteScore
2.50
自引率
6.20%
发文量
37
审稿时长
3 months
期刊介绍: Cellular Reprogramming is the premier journal dedicated to providing new insights on the etiology, development, and potential treatment of various diseases through reprogramming cellular mechanisms. The Journal delivers information on cutting-edge techniques and the latest high-quality research and discoveries that are transforming biomedical research. Cellular Reprogramming coverage includes: Somatic cell nuclear transfer and reprogramming in early embryos Embryonic stem cells Nuclear transfer stem cells (stem cells derived from nuclear transfer embryos) Generation of induced pluripotent stem (iPS) cells and/or potential for cell-based therapies Epigenetics Adult stem cells and pluripotency.
期刊最新文献
A New Frontier in Tumor Eradication: Harnessing In Vivo Cellular Reprogramming for Durable Cancer Immunotherapy. Deciphering the Sertoli Cell Signaling Pathway with Protein-Protein Interaction, Single-Cell Sequencing, and Gene Ontology. Reprogramming Stars #18: Engineering Cell Fates and Preventing Disease by Repressing Unwanted Plasticity-An Interview with Dr. Moritz Mall. Genome-Scale Analyses Reveal Roadblocks to Monkey Cloning. Rewinding the Tape to Identify Intrinsic Determinants of Reprogramming Potential.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1