Metabolic Reprogramming of Myeloid-derived Suppressor Cells in the Tumor Microenvironment.

IF 2 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Discovery medicine Pub Date : 2021-05-01
Liang Liu, Shuping Huo, Jianghui Liu, Qiaomin Li, Jing Wang
{"title":"Metabolic Reprogramming of Myeloid-derived Suppressor Cells in the Tumor Microenvironment.","authors":"Liang Liu,&nbsp;Shuping Huo,&nbsp;Jianghui Liu,&nbsp;Qiaomin Li,&nbsp;Jing Wang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A large number of studies on the metabolism of immune cells in anti-tumor response have been carried out in recent years. It is proved that metabolic reprogramming can determine the differentiation and functions of immune cells. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immunosuppressive cells in the tumor microenvironment (TME). They can significantly inhibit the anti-tumor response of T cells and play an important role in promoting tumor growth, metastasis, and invasion. This review summarizes the energy metabolic pathways of MDSCs in the TME, such as fatty acid oxidation (FAO), glycolysis, and amino acids (AAs) metabolism, and highlights the importance of metabolic reprogramming of MDSCs for its immunosuppressive functions.</p>","PeriodicalId":11379,"journal":{"name":"Discovery medicine","volume":"31 164","pages":"141-146"},"PeriodicalIF":2.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discovery medicine","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

A large number of studies on the metabolism of immune cells in anti-tumor response have been carried out in recent years. It is proved that metabolic reprogramming can determine the differentiation and functions of immune cells. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immunosuppressive cells in the tumor microenvironment (TME). They can significantly inhibit the anti-tumor response of T cells and play an important role in promoting tumor growth, metastasis, and invasion. This review summarizes the energy metabolic pathways of MDSCs in the TME, such as fatty acid oxidation (FAO), glycolysis, and amino acids (AAs) metabolism, and highlights the importance of metabolic reprogramming of MDSCs for its immunosuppressive functions.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肿瘤微环境中髓源性抑制细胞的代谢重编程。
近年来,人们对免疫细胞在抗肿瘤反应中的代谢进行了大量的研究。事实证明,代谢重编程可以决定免疫细胞的分化和功能。骨髓源性抑制细胞(MDSCs)是肿瘤微环境(TME)中异质的免疫抑制细胞群。它们能显著抑制T细胞的抗肿瘤反应,在促进肿瘤生长、转移和侵袭中发挥重要作用。本文综述了MDSCs在TME中的能量代谢途径,如脂肪酸氧化(FAO)、糖酵解和氨基酸(AAs)代谢,并强调了MDSCs的代谢重编程对其免疫抑制功能的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Discovery medicine
Discovery medicine MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
5.40
自引率
0.00%
发文量
80
审稿时长
6-12 weeks
期刊介绍: Discovery Medicine publishes novel, provocative ideas and research findings that challenge conventional notions about disease mechanisms, diagnosis, treatment, or any of the life sciences subjects. It publishes cutting-edge, reliable, and authoritative information in all branches of life sciences but primarily in the following areas: Novel therapies and diagnostics (approved or experimental); innovative ideas, research technologies, and translational research that will give rise to the next generation of new drugs and therapies; breakthrough understanding of mechanism of disease, biology, and physiology; and commercialization of biomedical discoveries pertaining to the development of new drugs, therapies, medical devices, and research technology.
期刊最新文献
The Action Mechanisms, Anti-Cancer and Antibiotic-Modulation Potential of Vaccinium myrtillus L. Extract. Development and Comparative Analysis of an Early Prediction Model for Acute Kidney Injury within 72-Hours Post-ICU Admission Using Evidence from the MIMIC-III Database. H2S Alleviates Propofol-Induced Impaired Learning and Memory by Promoting Nuclear Translocation of Nrf2 and Inhibiting Apoptosis and Pyroptosis in Hippocampal Neurons. Animal Feasibility Study of a Novel Spinal Cord Stimulation Multicolumn Lead (Heron Lead). The Clinical Significance of iNOS/NO Signaling Pathway in Traumatic Shock and the Mechanism under the Promotion on the Development of Traumatic Shock via Endoplasmic Reticulum Stress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1