Creation of a novel inverted charge density wave state.

IF 2.3 2区 物理与天体物理 Q3 CHEMISTRY, PHYSICAL Structural Dynamics-Us Pub Date : 2022-01-13 eCollection Date: 2022-01-01 DOI:10.1063/4.0000132
Yingchao Zhang, Xun Shi, Mengxue Guan, Wenjing You, Yigui Zhong, Tika R Kafle, Yaobo Huang, Hong Ding, Michael Bauer, Kai Rossnagel, Sheng Meng, Henry C Kapteyn, Margaret M Murnane
{"title":"Creation of a novel inverted charge density wave state.","authors":"Yingchao Zhang,&nbsp;Xun Shi,&nbsp;Mengxue Guan,&nbsp;Wenjing You,&nbsp;Yigui Zhong,&nbsp;Tika R Kafle,&nbsp;Yaobo Huang,&nbsp;Hong Ding,&nbsp;Michael Bauer,&nbsp;Kai Rossnagel,&nbsp;Sheng Meng,&nbsp;Henry C Kapteyn,&nbsp;Margaret M Murnane","doi":"10.1063/4.0000132","DOIUrl":null,"url":null,"abstract":"<p><p>Charge density wave (CDW) order is an emergent quantum phase that is characterized by periodic lattice distortion and charge density modulation, often present near superconducting transitions. Here, we uncover a novel inverted CDW state by using a femtosecond laser to coherently reverse the star-of-David lattice distortion in 1<i>T</i>-TaSe<sub>2</sub>. We track the signature of this novel CDW state using time- and angle-resolved photoemission spectroscopy and the time-dependent density functional theory to validate that it is associated with a unique lattice and charge arrangement never before realized. The dynamic electronic structure further reveals its novel properties that are characterized by an increased density of states near the Fermi level, high metallicity, and altered electron-phonon couplings. Our results demonstrate how ultrafast lasers can be used to create unique states in materials by manipulating charge-lattice orders and couplings.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759797/pdf/","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000132","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 8

Abstract

Charge density wave (CDW) order is an emergent quantum phase that is characterized by periodic lattice distortion and charge density modulation, often present near superconducting transitions. Here, we uncover a novel inverted CDW state by using a femtosecond laser to coherently reverse the star-of-David lattice distortion in 1T-TaSe2. We track the signature of this novel CDW state using time- and angle-resolved photoemission spectroscopy and the time-dependent density functional theory to validate that it is associated with a unique lattice and charge arrangement never before realized. The dynamic electronic structure further reveals its novel properties that are characterized by an increased density of states near the Fermi level, high metallicity, and altered electron-phonon couplings. Our results demonstrate how ultrafast lasers can be used to create unique states in materials by manipulating charge-lattice orders and couplings.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新型反向电荷密度波态的建立。
电荷密度波序是一种以周期性晶格畸变和电荷密度调制为特征的新兴量子相,通常出现在超导跃迁附近。在这里,我们通过使用飞秒激光相干地逆转1T-TaSe2中的大卫之星晶格畸变,揭示了一种新的反向CDW态。我们利用时间和角度分辨光谱学以及时间依赖的密度函数理论来跟踪这种新型CDW状态的特征,以验证它与以前从未实现过的独特晶格和电荷排列有关。动态电子结构进一步揭示了它的新特性,其特征是在费米能级附近的态密度增加,金属丰度高,电子-声子耦合改变。我们的研究结果展示了如何使用超快激光通过操纵电荷晶格顺序和耦合来在材料中创建独特的状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Structural Dynamics-Us
Structural Dynamics-Us CHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍: Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods. The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as: Time-resolved X-ray and electron diffraction and scattering, Coherent diffractive imaging, Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.), Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy, Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.), Multidimensional spectroscopies in the infrared, the visible and the ultraviolet, Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains, Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals. These new methods are enabled by new instrumentation, such as: X-ray free electron lasers, which provide flux, coherence, and time resolution, New sources of ultrashort electron pulses, New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources, New sources of ultrashort infrared and terahertz (THz) radiation, New detectors for X-rays and electrons, New sample handling and delivery schemes, New computational capabilities.
期刊最新文献
Structure and spin of the low- and high-spin states of Fe2+(phen)3 studied by x-ray scattering and emission spectroscopy. Ultrafast energy-dispersive soft-x-ray diffraction in the water window with a laser-driven source. Laue-DIALS: Open-source software for polychromatic x-ray diffraction data. Spatiotemporal determination of photoinduced strain in a Weyl semimetal. High-repetition-rate ultrafast electron diffraction with direct electron detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1