Segmentation of the Aortic Valve Apparatus in 3D Echocardiographic Images: Deformable Modeling of a Branching Medial Structure.

Alison M Pouch, Sijie Tian, Manabu Takabe, Hongzhi Wang, Jiefu Yuan, Albert T Cheung, Benjamin M Jackson, Joseph H Gorman, Robert C Gorman, Paul A Yushkevich
{"title":"Segmentation of the Aortic Valve Apparatus in 3D Echocardiographic Images: Deformable Modeling of a Branching Medial Structure.","authors":"Alison M Pouch,&nbsp;Sijie Tian,&nbsp;Manabu Takabe,&nbsp;Hongzhi Wang,&nbsp;Jiefu Yuan,&nbsp;Albert T Cheung,&nbsp;Benjamin M Jackson,&nbsp;Joseph H Gorman,&nbsp;Robert C Gorman,&nbsp;Paul A Yushkevich","doi":"10.1007/978-3-319-14678-2_20","DOIUrl":null,"url":null,"abstract":"<p><p>3D echocardiographic (3DE) imaging is a useful tool for assessing the complex geometry of the aortic valve apparatus. Segmentation of this structure in 3DE images is a challenging task that benefits from shape-guided deformable modeling methods, which enable inter-subject statistical shape comparison. Prior work demonstrates the efficacy of using continuous medial representation (cm-rep) as a shape descriptor for valve leaflets. However, its application to the entire aortic valve apparatus is limited since the structure has a branching medial geometry that cannot be explicitly parameterized in the original cm-rep framework. In this work, we show that the aortic valve apparatus can be accurately segmented using a new branching medial modeling paradigm. The segmentation method achieves a mean boundary displacement of 0.6 ± 0.1 mm (approximately one voxel) relative to manual segmentation on 11 3DE images of normal open aortic valves. This study demonstrates a promising approach for quantitative 3DE analysis of aortic valve morphology.</p>","PeriodicalId":74866,"journal":{"name":"Statistical atlases and computational models of the heart. STACOM (Workshop)","volume":" ","pages":"196-203"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-14678-2_20","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical atlases and computational models of the heart. STACOM (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-14678-2_20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

3D echocardiographic (3DE) imaging is a useful tool for assessing the complex geometry of the aortic valve apparatus. Segmentation of this structure in 3DE images is a challenging task that benefits from shape-guided deformable modeling methods, which enable inter-subject statistical shape comparison. Prior work demonstrates the efficacy of using continuous medial representation (cm-rep) as a shape descriptor for valve leaflets. However, its application to the entire aortic valve apparatus is limited since the structure has a branching medial geometry that cannot be explicitly parameterized in the original cm-rep framework. In this work, we show that the aortic valve apparatus can be accurately segmented using a new branching medial modeling paradigm. The segmentation method achieves a mean boundary displacement of 0.6 ± 0.1 mm (approximately one voxel) relative to manual segmentation on 11 3DE images of normal open aortic valves. This study demonstrates a promising approach for quantitative 3DE analysis of aortic valve morphology.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维超声心动图图像中主动脉瓣装置的分割:分支内侧结构的可变形建模。
三维超声心动图(3DE)成像是评估主动脉瓣装置复杂几何形状的有用工具。在3DE图像中分割这种结构是一项具有挑战性的任务,这得益于形状引导的可变形建模方法,该方法可以实现主体间的统计形状比较。先前的工作证明了使用连续内侧表示(cm-rep)作为瓣膜小叶的形状描述符的有效性。然而,其在整个主动脉瓣装置中的应用受到限制,因为该结构具有分支的内侧几何形状,无法在原始cm-rep框架中明确参数化。在这项工作中,我们表明主动脉瓣装置可以使用新的分支内侧建模范式准确分割。该方法在11张正常打开主动脉瓣的3DE图像上实现了相对于人工分割的平均边界位移0.6±0.1 mm(约1体素)。本研究为主动脉瓣形态的定量3DE分析提供了一种有前景的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatiotemporal Cardiac Statistical Shape Modeling: A Data-Driven Approach. Statistical Shape Modeling of Biventricular Anatomy with Shared Boundaries. Multi-modal Latent-Space Self-alignment for Super-Resolution Cardiac MR Segmentation. An Atlas-Based Analysis of Biventricular Mechanics in Tetralogy of Fallot. Statistical shape analysis of the tricuspid valve in hypoplastic left heart sydrome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1