Estimating intrinsic and extrinsic noise from single-cell gene expression measurements.

IF 0.8 4区 数学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Statistical Applications in Genetics and Molecular Biology Pub Date : 2016-12-01 DOI:10.1515/sagmb-2016-0002
Audrey Qiuyan Fu, Lior Pachter
{"title":"Estimating intrinsic and extrinsic noise from single-cell gene expression measurements.","authors":"Audrey Qiuyan Fu,&nbsp;Lior Pachter","doi":"10.1515/sagmb-2016-0002","DOIUrl":null,"url":null,"abstract":"<p><p>Gene expression is stochastic and displays variation (\"noise\") both within and between cells. Intracellular (intrinsic) variance can be distinguished from extracellular (extrinsic) variance by applying the law of total variance to data from two-reporter assays that probe expression of identically regulated gene pairs in single cells. We examine established formulas [Elowitz, M. B., A. J. Levine, E. D. Siggia and P. S. Swain (2002): \"Stochastic gene expression in a single cell,\" Science, 297, 1183-1186.] for the estimation of intrinsic and extrinsic noise and provide interpretations of them in terms of a hierarchical model. This allows us to derive alternative estimators that minimize bias or mean squared error. We provide a geometric interpretation of these results that clarifies the interpretation in [Elowitz, M. B., A. J. Levine, E. D. Siggia and P. S. Swain (2002): \"Stochastic gene expression in a single cell,\" Science, 297, 1183-1186.]. We also demonstrate through simulation and re-analysis of published data that the distribution assumptions underlying the hierarchical model have to be satisfied for the estimators to produce sensible results, which highlights the importance of normalization.</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"15 6","pages":"447-471"},"PeriodicalIF":0.8000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2016-0002","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2016-0002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 23

Abstract

Gene expression is stochastic and displays variation ("noise") both within and between cells. Intracellular (intrinsic) variance can be distinguished from extracellular (extrinsic) variance by applying the law of total variance to data from two-reporter assays that probe expression of identically regulated gene pairs in single cells. We examine established formulas [Elowitz, M. B., A. J. Levine, E. D. Siggia and P. S. Swain (2002): "Stochastic gene expression in a single cell," Science, 297, 1183-1186.] for the estimation of intrinsic and extrinsic noise and provide interpretations of them in terms of a hierarchical model. This allows us to derive alternative estimators that minimize bias or mean squared error. We provide a geometric interpretation of these results that clarifies the interpretation in [Elowitz, M. B., A. J. Levine, E. D. Siggia and P. S. Swain (2002): "Stochastic gene expression in a single cell," Science, 297, 1183-1186.]. We also demonstrate through simulation and re-analysis of published data that the distribution assumptions underlying the hierarchical model have to be satisfied for the estimators to produce sensible results, which highlights the importance of normalization.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
估计单细胞基因表达测量的内在和外在噪声。
基因表达是随机的,在细胞内和细胞间都表现出变异(“噪音”)。细胞内(内在)变异可以与细胞外(外在)变异区分开来,方法是将总变异定律应用于双报告基因试验的数据,该试验探测单细胞中相同调控基因对的表达。我们检验已建立的公式[Elowitz, M. B., a . J. Levine, E. D. Siggia和P. S. Swain(2002):“单个细胞中的随机基因表达”,《科学》,297,1183-1186。]用于估计内在和外在噪声,并根据层次模型提供对它们的解释。这使我们能够推导出最小化偏差或均方误差的替代估计器。我们提供了这些结果的几何解释,澄清了[Elowitz, M. B., a . J. Levine, E. D. Siggia和P. S. Swain(2002):“单个细胞中的随机基因表达”,《科学》,297,1183-1186.]中的解释。我们还通过模拟和对已发表数据的重新分析证明,为了产生合理的结果,估计器必须满足层次模型背后的分布假设,这突出了归一化的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Applications in Genetics and Molecular Biology
Statistical Applications in Genetics and Molecular Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
自引率
11.10%
发文量
8
期刊介绍: Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.
期刊最新文献
When is the allele-sharing dissimilarity between two populations exceeded by the allele-sharing dissimilarity of a population with itself? Sparse latent factor regression models for genome-wide and epigenome-wide association studies Low variability in the underlying cellular landscape adversely affects the performance of interaction-based approaches for conducting cell-specific analyses of DNA methylation in bulk samples. AdaReg: data adaptive robust estimation in linear regression with application in GTEx gene expressions. Collocation based training of neural ordinary differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1