{"title":"Biomimetic approach to tacit learning based on compound control.","authors":"Shingo Shimoda, Hidenori Kimura","doi":"10.1109/TSMCB.2009.2014470","DOIUrl":null,"url":null,"abstract":"<p><p>The remarkable capability of living organisms to adapt to unknown environments is due to learning mechanisms that are totally different from the current artificial machine-learning paradigm. Computational media composed of identical elements that have simple activity rules play a major role in biological control, such as the activities of neurons in brains and the molecular interactions in intracellular control. As a result of integrations of the individual activities of the computational media, new behavioral patterns emerge to adapt to changing environments. We previously implemented this feature of biological controls in a form of machine learning and succeeded to realize bipedal walking without the robot model or trajectory planning. Despite the success of bipedal walking, it was a puzzle as to why the individual activities of the computational media could achieve the global behavior. In this paper, we answer this question by taking a statistical approach that connects the individual activities of computational media to global network behaviors. We show that the individual activities can generate optimized behaviors from a particular global viewpoint, i.e., autonomous rhythm generation and learning of balanced postures, without using global performance indices.</p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"77-90"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2009.2014470","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCB.2009.2014470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/7/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
The remarkable capability of living organisms to adapt to unknown environments is due to learning mechanisms that are totally different from the current artificial machine-learning paradigm. Computational media composed of identical elements that have simple activity rules play a major role in biological control, such as the activities of neurons in brains and the molecular interactions in intracellular control. As a result of integrations of the individual activities of the computational media, new behavioral patterns emerge to adapt to changing environments. We previously implemented this feature of biological controls in a form of machine learning and succeeded to realize bipedal walking without the robot model or trajectory planning. Despite the success of bipedal walking, it was a puzzle as to why the individual activities of the computational media could achieve the global behavior. In this paper, we answer this question by taking a statistical approach that connects the individual activities of computational media to global network behaviors. We show that the individual activities can generate optimized behaviors from a particular global viewpoint, i.e., autonomous rhythm generation and learning of balanced postures, without using global performance indices.