Improving POMDP tractability via belief compression and clustering.

Xin Li, William K Cheung, Jiming Liu
{"title":"Improving POMDP tractability via belief compression and clustering.","authors":"Xin Li,&nbsp;William K Cheung,&nbsp;Jiming Liu","doi":"10.1109/TSMCB.2009.2021573","DOIUrl":null,"url":null,"abstract":"<p><p>Partially observable Markov decision process (POMDP) is a commonly adopted mathematical framework for solving planning problems in stochastic environments. However, computing the optimal policy of POMDP for large-scale problems is known to be intractable, where the high dimensionality of the underlying belief space is one of the major causes. In this paper, we propose a hybrid approach that integrates two different approaches for reducing the dimensionality of the belief space: 1) belief compression and 2) value-directed compression. In particular, a novel orthogonal nonnegative matrix factorization is derived for the belief compression, which is then integrated in a value-directed framework for computing the policy. In addition, with the conjecture that a properly partitioned belief space can have its per-cluster intrinsic dimension further reduced, we propose to apply a k-means-like clustering technique to partition the belief space to form a set of sub-POMDPs before applying the dimension reduction techniques to each of them. We have evaluated the proposed belief compression and clustering approaches based on a set of benchmark problems and demonstrated their effectiveness in reducing the cost for computing policies, with the quality of the policies being retained.</p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"125-36"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2009.2021573","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCB.2009.2021573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/7/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Partially observable Markov decision process (POMDP) is a commonly adopted mathematical framework for solving planning problems in stochastic environments. However, computing the optimal policy of POMDP for large-scale problems is known to be intractable, where the high dimensionality of the underlying belief space is one of the major causes. In this paper, we propose a hybrid approach that integrates two different approaches for reducing the dimensionality of the belief space: 1) belief compression and 2) value-directed compression. In particular, a novel orthogonal nonnegative matrix factorization is derived for the belief compression, which is then integrated in a value-directed framework for computing the policy. In addition, with the conjecture that a properly partitioned belief space can have its per-cluster intrinsic dimension further reduced, we propose to apply a k-means-like clustering technique to partition the belief space to form a set of sub-POMDPs before applying the dimension reduction techniques to each of them. We have evaluated the proposed belief compression and clustering approaches based on a set of benchmark problems and demonstrated their effectiveness in reducing the cost for computing policies, with the quality of the policies being retained.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过信念压缩和聚类提高POMDP的可追溯性。
部分可观察马尔可夫决策过程(POMDP)是求解随机环境下规划问题的常用数学框架。然而,对于大规模问题,计算POMDP的最优策略是一个棘手的问题,其中底层信念空间的高维是主要原因之一。在本文中,我们提出了一种混合方法,集成了两种不同的方法来降低信念空间的维数:1)信念压缩和2)值导向压缩。特别地,推导了一种新的正交非负矩阵分解方法用于信念压缩,然后将其集成到一个值导向的策略计算框架中。此外,利用适当划分的信念空间可以进一步降低其每簇内在维数的假设,我们提出在对每个信念空间进行降维之前,先采用类k均值聚类技术对信念空间进行划分,形成一组子pomdp。我们基于一组基准问题评估了所提出的信念压缩和聚类方法,并证明了它们在降低计算策略成本方面的有效性,同时保留了策略的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
6.0 months
期刊最新文献
Alternative Tests for the Selection of Model Variables Operations Research Optimization of neural networks using variable structure systems. Gait recognition across various walking speeds using higher order shape configuration based on a differential composition model. Integrating instance selection, instance weighting, and feature weighting for nearest neighbor classifiers by coevolutionary algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1