{"title":"Improving POMDP tractability via belief compression and clustering.","authors":"Xin Li, William K Cheung, Jiming Liu","doi":"10.1109/TSMCB.2009.2021573","DOIUrl":null,"url":null,"abstract":"<p><p>Partially observable Markov decision process (POMDP) is a commonly adopted mathematical framework for solving planning problems in stochastic environments. However, computing the optimal policy of POMDP for large-scale problems is known to be intractable, where the high dimensionality of the underlying belief space is one of the major causes. In this paper, we propose a hybrid approach that integrates two different approaches for reducing the dimensionality of the belief space: 1) belief compression and 2) value-directed compression. In particular, a novel orthogonal nonnegative matrix factorization is derived for the belief compression, which is then integrated in a value-directed framework for computing the policy. In addition, with the conjecture that a properly partitioned belief space can have its per-cluster intrinsic dimension further reduced, we propose to apply a k-means-like clustering technique to partition the belief space to form a set of sub-POMDPs before applying the dimension reduction techniques to each of them. We have evaluated the proposed belief compression and clustering approaches based on a set of benchmark problems and demonstrated their effectiveness in reducing the cost for computing policies, with the quality of the policies being retained.</p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"125-36"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2009.2021573","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCB.2009.2021573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/7/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Partially observable Markov decision process (POMDP) is a commonly adopted mathematical framework for solving planning problems in stochastic environments. However, computing the optimal policy of POMDP for large-scale problems is known to be intractable, where the high dimensionality of the underlying belief space is one of the major causes. In this paper, we propose a hybrid approach that integrates two different approaches for reducing the dimensionality of the belief space: 1) belief compression and 2) value-directed compression. In particular, a novel orthogonal nonnegative matrix factorization is derived for the belief compression, which is then integrated in a value-directed framework for computing the policy. In addition, with the conjecture that a properly partitioned belief space can have its per-cluster intrinsic dimension further reduced, we propose to apply a k-means-like clustering technique to partition the belief space to form a set of sub-POMDPs before applying the dimension reduction techniques to each of them. We have evaluated the proposed belief compression and clustering approaches based on a set of benchmark problems and demonstrated their effectiveness in reducing the cost for computing policies, with the quality of the policies being retained.