João Viana da Fonseca Neto, Ivanildo Silva Abreu, Fábio Nogueira da Silva
{"title":"Neural-genetic synthesis for state-space controllers based on linear quadratic regulator design for eigenstructure assignment.","authors":"João Viana da Fonseca Neto, Ivanildo Silva Abreu, Fábio Nogueira da Silva","doi":"10.1109/TSMCB.2009.2013722","DOIUrl":null,"url":null,"abstract":"<p><p>Toward the synthesis of state-space controllers, a neural-genetic model based on the linear quadratic regulator design for the eigenstructure assignment of multivariable dynamic systems is presented. The neural-genetic model represents a fusion of a genetic algorithm and a recurrent neural network (RNN) to perform the selection of the weighting matrices and the algebraic Riccati equation solution, respectively. A fourth-order electric circuit model is used to evaluate the convergence of the computational intelligence paradigms and the control design method performance. The genetic search convergence evaluation is performed in terms of the fitness function statistics and the RNN convergence, which is evaluated by landscapes of the energy and norm, as a function of the parameter deviations. The control problem solution is evaluated in the time and frequency domains by the impulse response, singular values, and modal analysis.</p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"266-85"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2009.2013722","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCB.2009.2013722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/8/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
Toward the synthesis of state-space controllers, a neural-genetic model based on the linear quadratic regulator design for the eigenstructure assignment of multivariable dynamic systems is presented. The neural-genetic model represents a fusion of a genetic algorithm and a recurrent neural network (RNN) to perform the selection of the weighting matrices and the algebraic Riccati equation solution, respectively. A fourth-order electric circuit model is used to evaluate the convergence of the computational intelligence paradigms and the control design method performance. The genetic search convergence evaluation is performed in terms of the fitness function statistics and the RNN convergence, which is evaluated by landscapes of the energy and norm, as a function of the parameter deviations. The control problem solution is evaluated in the time and frequency domains by the impulse response, singular values, and modal analysis.