{"title":"High-Risk Childhood Acute Lymphoblastic Leukemia","authors":"Deepa Bhojwani , Scott C. Howard , Ching-Hon Pui","doi":"10.3816/CLM.2009.s.016","DOIUrl":null,"url":null,"abstract":"<div><p>Although most children with acute lymphoblastic leukemia (ALL) are cured, certain subsets have a high risk of relapse. Relapse risk can be predicted by early response to therapy, clinical and pharmacogenetic features of the host, and genetic characteristics of leukemic cells. Though early treatment response can be assessed by the peripheral blast cell count after 1 week of single-agent glucocorticoid treatment or percent of bone marrow blasts by morphology after 1 or 2 weeks of multiagent induction treatment, determination of minimal residual disease by polymerase chain reaction (PCR) or flow cytometry after 2 to 6 weeks of induction is the most precise and useful measure. Augmented therapy has improved outcome for the poor responders to initial treatment. Infants with mixed-lineage leukemia (MLL)–rearranged ALL comprise a very poor-risk group wherein further intensification of chemotherapy causes significant toxicity. Hybrid protocols incorporating drugs effective for acute myeloid leukemia could improve survival, a strategy being tested in international trials. Studies on the biology of MLL-induced leukemogenesis have prompted the development of novel targeted agents, currently under evaluation in clinical trials. Short-term outcomes of patients with Philadelphia chromosome (Ph)–positive ALL have improved significantly by adding tyrosine kinase inhibitors to standard chemotherapy regimens. New agents and methods to overcome resistance are under investigation, and allogeneic stem cell transplantation is recommended for certain subsets of patients, for example those with Ph<sup>+</sup> and T-cell ALL with poor early response. Genome-wide interrogation of leukemic cell genetic abnormalities and germline genetic variations promise to identify new molecular targets for therapy.</p></div>","PeriodicalId":100272,"journal":{"name":"Clinical Lymphoma and Myeloma","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3816/CLM.2009.s.016","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Lymphoma and Myeloma","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1557919011703444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66
Abstract
Although most children with acute lymphoblastic leukemia (ALL) are cured, certain subsets have a high risk of relapse. Relapse risk can be predicted by early response to therapy, clinical and pharmacogenetic features of the host, and genetic characteristics of leukemic cells. Though early treatment response can be assessed by the peripheral blast cell count after 1 week of single-agent glucocorticoid treatment or percent of bone marrow blasts by morphology after 1 or 2 weeks of multiagent induction treatment, determination of minimal residual disease by polymerase chain reaction (PCR) or flow cytometry after 2 to 6 weeks of induction is the most precise and useful measure. Augmented therapy has improved outcome for the poor responders to initial treatment. Infants with mixed-lineage leukemia (MLL)–rearranged ALL comprise a very poor-risk group wherein further intensification of chemotherapy causes significant toxicity. Hybrid protocols incorporating drugs effective for acute myeloid leukemia could improve survival, a strategy being tested in international trials. Studies on the biology of MLL-induced leukemogenesis have prompted the development of novel targeted agents, currently under evaluation in clinical trials. Short-term outcomes of patients with Philadelphia chromosome (Ph)–positive ALL have improved significantly by adding tyrosine kinase inhibitors to standard chemotherapy regimens. New agents and methods to overcome resistance are under investigation, and allogeneic stem cell transplantation is recommended for certain subsets of patients, for example those with Ph+ and T-cell ALL with poor early response. Genome-wide interrogation of leukemic cell genetic abnormalities and germline genetic variations promise to identify new molecular targets for therapy.