Role of Shwachman-Bodian-Diamond syndrome protein in translation machinery and cell chemotaxis: a comparative genomics approach.

Q2 Biochemistry, Genetics and Molecular Biology Advances and Applications in Bioinformatics and Chemistry Pub Date : 2011-01-01 Epub Date: 2011-09-21 DOI:10.2147/AABC.S23510
Olga Vasieva
{"title":"Role of Shwachman-Bodian-Diamond syndrome protein in translation machinery and cell chemotaxis: a comparative genomics approach.","authors":"Olga Vasieva","doi":"10.2147/AABC.S23510","DOIUrl":null,"url":null,"abstract":"<p><p>Shwachman-Bodian-Diamond syndrome (SBDS) is linked to a mutation in a single gene. The SBDS proinvolved in RNA metabolism and ribosome-associated functions, but SBDS mutation is primarily linked to a defect in polymorphonuclear leukocytes unable to orient correctly in a spatial gradient of chemoattractants. Results of data mining and comparative genomic approaches undertaken in this study suggest that SBDS protein is also linked to tRNA metabolism and translation initiation. Analysis of crosstalk between translation machinery and cytoskeletal dynamics provides new insights into the cellular chemotactic defects caused by SBDS protein malfunction. The proposed functional interactions provide a new approach to exploit potential targets in the treatment and monitoring of this disease.</p>","PeriodicalId":53584,"journal":{"name":"Advances and Applications in Bioinformatics and Chemistry","volume":" ","pages":"43-50"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2147/AABC.S23510","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances and Applications in Bioinformatics and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/AABC.S23510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/9/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 3

Abstract

Shwachman-Bodian-Diamond syndrome (SBDS) is linked to a mutation in a single gene. The SBDS proinvolved in RNA metabolism and ribosome-associated functions, but SBDS mutation is primarily linked to a defect in polymorphonuclear leukocytes unable to orient correctly in a spatial gradient of chemoattractants. Results of data mining and comparative genomic approaches undertaken in this study suggest that SBDS protein is also linked to tRNA metabolism and translation initiation. Analysis of crosstalk between translation machinery and cytoskeletal dynamics provides new insights into the cellular chemotactic defects caused by SBDS protein malfunction. The proposed functional interactions provide a new approach to exploit potential targets in the treatment and monitoring of this disease.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shwachman-Bodian-Diamond综合征蛋白在翻译机制和细胞趋化性中的作用:比较基因组学方法。
Shwachman-Bodian-Diamond综合征(SBDS)与单个基因突变有关。SBDS前基因参与RNA代谢和核糖体相关功能,但SBDS突变主要与多形核白细胞的缺陷有关,无法在化学引诱剂的空间梯度中正确定向。本研究的数据挖掘和比较基因组方法的结果表明,SBDS蛋白也与tRNA代谢和翻译起始有关。翻译机制与细胞骨架动力学之间的串扰分析为研究SBDS蛋白功能障碍引起的细胞趋化缺陷提供了新的思路。所提出的功能相互作用为开发治疗和监测该疾病的潜在靶点提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances and Applications in Bioinformatics and Chemistry
Advances and Applications in Bioinformatics and Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
6.50
自引率
0.00%
发文量
7
审稿时长
16 weeks
期刊最新文献
Non-Invasive Cancer Detection Using Blood Test and Predictive Modeling Approach. Recent Applications of Artificial Intelligence in Discovery of New Antibacterial Agents. LAMP5, One of Four Genes Related to Oxidative Stress That Predict Biochemical Recurrence-Free Survival, Promotes Proliferation and Invasion in Prostate Cancer. Investigating the Potency of Erythrina‒Derived Flavonoids as Cholinesterase Inhibitors and Free Radical Scavengers Through in silico Approach: Implications for Alzheimer's Disease Therapy. Employing Hexahydroquinolines as PfCDPK4 Inhibitors to Combat Malaria Transmission: An Advanced Computational Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1