A comparison of information functions and search strategies for sensor planning in target classification.

Guoxian Zhang, Silvia Ferrari, Chenghui Cai
{"title":"A comparison of information functions and search strategies for sensor planning in target classification.","authors":"Guoxian Zhang,&nbsp;Silvia Ferrari,&nbsp;Chenghui Cai","doi":"10.1109/TSMCB.2011.2165336","DOIUrl":null,"url":null,"abstract":"<p><p>This paper investigates the comparative performance of several information-driven search strategies and decision rules using a canonical target classification problem. Five sensor models are considered: one obtained from classical estimation theory and four obtained from Bernoulli, Poisson, binomial, and mixture-of-binomial distributions. A systematic approach is presented for deriving information functions that represent the expected utility of future sensor measurements from mutual information, Rènyi divergence, Kullback-Leibler divergence, information potential, quadratic entropy, and the Cauchy-Schwarz distance. The resulting information-driven strategies are compared to direct-search, alert-confirm, task-driven (TS), and log-likelihood-ratio (LLR) search strategies. Extensive numerical simulations show that quadratic entropy typically leads to the most effective search strategy with respect to correct-classification rates. In the presence of prior information, the quadratic-entropy-driven strategy also displays the lowest rate of false alarms. However, when prior information is absent or very noisy, TS and LLR strategies achieve the lowest false-alarm rates for the Bernoulli, mixture-of-binomial, and classical sensor models.</p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"2-16"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2011.2165336","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCB.2011.2165336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/10/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

This paper investigates the comparative performance of several information-driven search strategies and decision rules using a canonical target classification problem. Five sensor models are considered: one obtained from classical estimation theory and four obtained from Bernoulli, Poisson, binomial, and mixture-of-binomial distributions. A systematic approach is presented for deriving information functions that represent the expected utility of future sensor measurements from mutual information, Rènyi divergence, Kullback-Leibler divergence, information potential, quadratic entropy, and the Cauchy-Schwarz distance. The resulting information-driven strategies are compared to direct-search, alert-confirm, task-driven (TS), and log-likelihood-ratio (LLR) search strategies. Extensive numerical simulations show that quadratic entropy typically leads to the most effective search strategy with respect to correct-classification rates. In the presence of prior information, the quadratic-entropy-driven strategy also displays the lowest rate of false alarms. However, when prior information is absent or very noisy, TS and LLR strategies achieve the lowest false-alarm rates for the Bernoulli, mixture-of-binomial, and classical sensor models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
目标分类中传感器规划的信息功能与搜索策略比较。
本文利用一个典型目标分类问题,研究了几种信息驱动搜索策略和决策规则的性能比较。考虑了五种传感器模型:一种来自经典估计理论,四种来自伯努利分布、泊松分布、二项分布和混合二项分布。提出了一种系统的方法,用于从互信息、r nyi散度、Kullback-Leibler散度、信息势、二次熵和Cauchy-Schwarz距离中推导信息函数,这些信息函数表示未来传感器测量的预期效用。将得到的信息驱动策略与直接搜索、警报确认、任务驱动(TS)和对数似然比(LLR)搜索策略进行比较。大量的数值模拟表明,二次熵通常会导致关于正确分类率的最有效的搜索策略。在存在先验信息的情况下,二次熵驱动的策略也显示出最低的误报率。然而,当先验信息缺失或噪声很大时,TS和LLR策略对伯努利、混合二项和经典传感器模型的误报率最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
6.0 months
期刊最新文献
Alternative Tests for the Selection of Model Variables Operations Research Optimization of neural networks using variable structure systems. Gait recognition across various walking speeds using higher order shape configuration based on a differential composition model. Integrating instance selection, instance weighting, and feature weighting for nearest neighbor classifiers by coevolutionary algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1