Xiao-xing Peng (彭晓星), Liang-hao Xu (徐良浩), Yu-wen Liu (刘玉文), Guo-ping Zhang (张国平), Yan-tao Cao (曹彦涛), Fang-wen Hong (洪方文), Kai Yan (颜开)
{"title":"Experimental measurement of tip vortex flow field with/without cavitation in an elliptic hydrofoil","authors":"Xiao-xing Peng (彭晓星), Liang-hao Xu (徐良浩), Yu-wen Liu (刘玉文), Guo-ping Zhang (张国平), Yan-tao Cao (曹彦涛), Fang-wen Hong (洪方文), Kai Yan (颜开)","doi":"10.1016/S1001-6058(16)60808-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, recent measurements of tip vortex flow with and without cavitation carried out in Cavitation Mechanism Tunnel of China Ship Scientific Research Center (CSSRC) are presented. The elliptic hydrofoil with section NACA 66<sub>2</sub>-415 was adopted as test model. High-speed video (HSV) camera was used to visualize the trajectory of tip vortex core and the form of tip vortex cavitation (TVC) in different cavitation situations. Laser Doppler velocimetry (LDV) was employed to measure the tip vortex flow field in some typical sections along the vortex trajectory with the case of cavitation free. Stereo particle image velocimetry (SPIV) system was used to measure the velocity and vorticity distributions with and without cavitation. Series measurement results such as velocity and vorticity distributions, the trajectory of tip vortex core, the vortex core radius, cavity size and cavitation inception number were obtained. The results demonstrated that the minimum pressure coefficient in the vortex core obtained by flow field measurement was quite coincident with the tip vortex cavitation inception number obtained under the condition of high incoming velocity and low air content. And TVC would decrease the vortex strength comparing with the case without cavitation.</p></div>","PeriodicalId":66131,"journal":{"name":"水动力学研究与进展:英文版","volume":"29 6","pages":"Pages 939-953"},"PeriodicalIF":3.4000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1001-6058(16)60808-9","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"水动力学研究与进展:英文版","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001605816608089","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 31
Abstract
In this paper, recent measurements of tip vortex flow with and without cavitation carried out in Cavitation Mechanism Tunnel of China Ship Scientific Research Center (CSSRC) are presented. The elliptic hydrofoil with section NACA 662-415 was adopted as test model. High-speed video (HSV) camera was used to visualize the trajectory of tip vortex core and the form of tip vortex cavitation (TVC) in different cavitation situations. Laser Doppler velocimetry (LDV) was employed to measure the tip vortex flow field in some typical sections along the vortex trajectory with the case of cavitation free. Stereo particle image velocimetry (SPIV) system was used to measure the velocity and vorticity distributions with and without cavitation. Series measurement results such as velocity and vorticity distributions, the trajectory of tip vortex core, the vortex core radius, cavity size and cavitation inception number were obtained. The results demonstrated that the minimum pressure coefficient in the vortex core obtained by flow field measurement was quite coincident with the tip vortex cavitation inception number obtained under the condition of high incoming velocity and low air content. And TVC would decrease the vortex strength comparing with the case without cavitation.