Fan Huang, Jiabin Zhou, Nan Chen, Yuhua Li, Kuan Li, Shuiping Wu
{"title":"Chemical characteristics and source apportionment of PM2.5 in Wuhan, China","authors":"Fan Huang, Jiabin Zhou, Nan Chen, Yuhua Li, Kuan Li, Shuiping Wu","doi":"10.1007/s10874-019-09395-0","DOIUrl":null,"url":null,"abstract":"<p>Continuous online measurements of fine particulate matter mass (PM<sub>2.5</sub>) and its chemical composition were carried out at an urban monitoring site in Wuhan from March 2017 to February 2018. The PM<sub>2.5</sub> mass concentration ranged from 6.3 to 223?μg/m<sup>3</sup>, with the highest in winter and the lowest in summer. Water soluble ions (WSIs) were the most abundant component in PM<sub>2.5</sub> (28.8?±?22.9?μg/m<sup>3</sup>), followed by carbonaceous aerosol (11.9?±?10.4?μg/m<sup>3</sup>) and elements (5.5?±?6.7?μg/m<sup>3</sup>). It is noteworthy that six episodes of sustained high PM were observed during the study period. Five major contributors of PM<sub>2.5</sub> were identified by positive matrix factorization (PMF) to be the iron and steel industry, fugitive dust, secondary photochemistry, traffic-related emission and biomass burning, contributing 26.3%, 5.5%, 29.5%, 29.2% and 9.6% to PM<sub>2.5</sub>, respectively. Furthermore, conditional probability function (CPF), trajectory analysis and potential source contribution function (PSCF) were used to identify the influences of local activities and regional source. Local sources mainly include Wuhan iron and steel group, construction sites and urban trunk roads, etc. Three pollution transport pathways of PM<sub>2.5</sub> in Wuhan were identified to be northwest, east and south pathway, with the relative contribution of 40%, 17% and 43%, respectively. Western Henan, northern Shaanxi and southwestern Shanxi were identified to be the major potential source regions of PM<sub>2.5</sub> in Wuhan.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"76 3","pages":"245 - 262"},"PeriodicalIF":3.0000,"publicationDate":"2019-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-019-09395-0","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-019-09395-0","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 28
Abstract
Continuous online measurements of fine particulate matter mass (PM2.5) and its chemical composition were carried out at an urban monitoring site in Wuhan from March 2017 to February 2018. The PM2.5 mass concentration ranged from 6.3 to 223?μg/m3, with the highest in winter and the lowest in summer. Water soluble ions (WSIs) were the most abundant component in PM2.5 (28.8?±?22.9?μg/m3), followed by carbonaceous aerosol (11.9?±?10.4?μg/m3) and elements (5.5?±?6.7?μg/m3). It is noteworthy that six episodes of sustained high PM were observed during the study period. Five major contributors of PM2.5 were identified by positive matrix factorization (PMF) to be the iron and steel industry, fugitive dust, secondary photochemistry, traffic-related emission and biomass burning, contributing 26.3%, 5.5%, 29.5%, 29.2% and 9.6% to PM2.5, respectively. Furthermore, conditional probability function (CPF), trajectory analysis and potential source contribution function (PSCF) were used to identify the influences of local activities and regional source. Local sources mainly include Wuhan iron and steel group, construction sites and urban trunk roads, etc. Three pollution transport pathways of PM2.5 in Wuhan were identified to be northwest, east and south pathway, with the relative contribution of 40%, 17% and 43%, respectively. Western Henan, northern Shaanxi and southwestern Shanxi were identified to be the major potential source regions of PM2.5 in Wuhan.
期刊介绍:
The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics:
Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only.
The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere.
Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere.
Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.