Effects of restricted fructose access on body weight and blood pressure circadian rhythms.

Experimental Diabetes Research Pub Date : 2012-01-01 Epub Date: 2012-03-29 DOI:10.1155/2012/459087
Danielle Senador, Swapnil Shewale, Maria Claudia Irigoyen, Khalid M Elased, Mariana Morris
{"title":"Effects of restricted fructose access on body weight and blood pressure circadian rhythms.","authors":"Danielle Senador, Swapnil Shewale, Maria Claudia Irigoyen, Khalid M Elased, Mariana Morris","doi":"10.1155/2012/459087","DOIUrl":null,"url":null,"abstract":"High-fructose diet is known to produce cardiovascular and metabolic pathologies. The objective was to determine whether the timing of high fructose (10% liquid solution) intake affect the metabolic and cardiovascular outcomes. Male C57BL mice with radiotelemetric probes were divided into four groups: (1) 24 h water (control); (2) 24 h fructose (F24); (3) 12 h fructose during the light phase (F12L); (4) 12 h fructose during the dark phase (F12D). All fructose groups had higher fluid intake. Body weight was increased in mice on restricted access with no difference in total caloric intake. Fasting glycemia was higher in groups with restricted access. F24 mice showed a fructose-induced blood pressure increase during the dark period. Blood pressure circadian rhythms were absent in F12L mice. Results suggest that the timing of fructose intake is an important variable in the etiology of cardiovascular and metabolic pathologies produced by high fructose consumption.","PeriodicalId":12109,"journal":{"name":"Experimental Diabetes Research","volume":" ","pages":"459087"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/459087","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Diabetes Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/459087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/3/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

High-fructose diet is known to produce cardiovascular and metabolic pathologies. The objective was to determine whether the timing of high fructose (10% liquid solution) intake affect the metabolic and cardiovascular outcomes. Male C57BL mice with radiotelemetric probes were divided into four groups: (1) 24 h water (control); (2) 24 h fructose (F24); (3) 12 h fructose during the light phase (F12L); (4) 12 h fructose during the dark phase (F12D). All fructose groups had higher fluid intake. Body weight was increased in mice on restricted access with no difference in total caloric intake. Fasting glycemia was higher in groups with restricted access. F24 mice showed a fructose-induced blood pressure increase during the dark period. Blood pressure circadian rhythms were absent in F12L mice. Results suggest that the timing of fructose intake is an important variable in the etiology of cardiovascular and metabolic pathologies produced by high fructose consumption.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
限制果糖摄入对体重和血压昼夜节律的影响
众所周知,高果糖饮食会导致心血管和代谢疾病。目的是确定摄入高果糖(10%液体溶液)的时间是否会影响代谢和心血管结果。用无线电遥测探针将雄性C57BL小鼠分为四组:(1)24 h水(对照组);(2) 24 h果糖(F24);(3)光期12 h果糖(F12L);(4)暗期12h果糖(F12D)。所有果糖组都有更高的液体摄入量。进食受限的小鼠体重增加,但总热量摄入没有差异。限制进入组的空腹血糖较高。F24小鼠在黑暗期表现出果糖诱导的血压升高。F12L小鼠的血压昼夜节律不存在。结果表明,果糖摄入的时间是高果糖摄入引起的心血管和代谢病理病因学的重要变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Diabetes Research
Experimental Diabetes Research 医学-内分泌学与代谢
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
期刊最新文献
Nontraditional Therapy of Diabetes and Its Complications In Vitro Investigation and Evaluation of Novel Drug Based on Polyherbal Extract against Type 2 Diabetes Prevalence and Risk Factors Associated with Type 2 Diabetes in Elderly Patients Aged 45-80 Years at Kanungu District Erratum to “Circulating Levels of MicroRNA from Children with Newly Diagnosed Type 1 Diabetes and Healthy Controls: Evidence That miR-25 Associates to Residual Beta-Cell Function and Glycaemic Control during Disease Progression” A PEDF-derived peptide inhibits retinal neovascularization and blocks mobilization of bone marrow-derived endothelial progenitor cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1