Dingani Nkosi, Caroline A Miller, Audrey N Jajosky, Zoltán N Oltvai
{"title":"Incidental discovery of acute myeloid leukemia during liquid biopsy of a lung cancer patient.","authors":"Dingani Nkosi, Caroline A Miller, Audrey N Jajosky, Zoltán N Oltvai","doi":"10.1101/mcs.a006201","DOIUrl":null,"url":null,"abstract":"<p><p>Liquid biopsy is considered an alternative to standard next-generation sequencing (NGS) of solid tumor samples when biopsy tissue is inadequate for testing or when testing of a peripheral blood sample is preferred. A common assumption of liquid biopsies is that the NGS data obtained on circulating cell-free DNA is a high-fidelity reflection of what would be found by solid tumor testing. Here, we describe a case that challenges this widely held assumption. A patient diagnosed with lung carcinoma showed pathogenic <i>IDH1</i> and <i>TP53</i> mutations by liquid biopsy NGS at an outside laboratory. Subsequent in-house NGS of a metastatic lymph node fine-needle aspiration (FNA) sample revealed two pathogenic <i>EGFR</i> mutations. Morphologic and immunophenotypic assessment of the patient's blood sample identified acute myeloid leukemia, with in-house NGS confirming and identifying pathogenic <i>IDH1, TP53</i>, and <i>BCOR</i> mutations, respectively. This case, together with a few similar reports, demonstrates that caution is needed when interpreting liquid biopsy NGS results, especially if they are inconsistent with the presumptive diagnosis. Our case suggests that routine parallel sequencing of peripheral white blood cells would substantially increase the fidelity of the obtained liquid biopsy results.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/af/10/MCS006201Nko.PMC9235846.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor Molecular Case Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/mcs.a006201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 2
Abstract
Liquid biopsy is considered an alternative to standard next-generation sequencing (NGS) of solid tumor samples when biopsy tissue is inadequate for testing or when testing of a peripheral blood sample is preferred. A common assumption of liquid biopsies is that the NGS data obtained on circulating cell-free DNA is a high-fidelity reflection of what would be found by solid tumor testing. Here, we describe a case that challenges this widely held assumption. A patient diagnosed with lung carcinoma showed pathogenic IDH1 and TP53 mutations by liquid biopsy NGS at an outside laboratory. Subsequent in-house NGS of a metastatic lymph node fine-needle aspiration (FNA) sample revealed two pathogenic EGFR mutations. Morphologic and immunophenotypic assessment of the patient's blood sample identified acute myeloid leukemia, with in-house NGS confirming and identifying pathogenic IDH1, TP53, and BCOR mutations, respectively. This case, together with a few similar reports, demonstrates that caution is needed when interpreting liquid biopsy NGS results, especially if they are inconsistent with the presumptive diagnosis. Our case suggests that routine parallel sequencing of peripheral white blood cells would substantially increase the fidelity of the obtained liquid biopsy results.
期刊介绍:
Cold Spring Harbor Molecular Case Studies is an open-access, peer-reviewed, international journal in the field of precision medicine. Articles in the journal present genomic and molecular analyses of individuals or cohorts alongside their clinical presentations and phenotypic information. The journal''s purpose is to rapidly share insights into disease development and treatment gained by application of genomics, proteomics, metabolomics, biomarker analysis, and other approaches. The journal covers the fields of cancer, complex diseases, monogenic disorders, neurological conditions, orphan diseases, infectious disease, gene therapy, and pharmacogenomics. It has a rapid peer-review process that is based on technical evaluation of the analyses performed, not the novelty of findings, and offers a swift, clear path to publication. The journal publishes: Research Reports presenting detailed case studies of individuals and small cohorts, Research Articles describing more extensive work using larger cohorts and/or functional analyses, Rapid Communications presenting the discovery of a novel variant and/or novel phenotype associated with a known disease gene, Rapid Cancer Communications presenting the discovery of a novel variant or combination of variants in a cancer type, Variant Discrepancy Resolution describing efforts to resolve differences or update variant interpretations in ClinVar through case-level data sharing, Follow-up Reports linked to previous observations, Plus Review Articles, Editorials, and Position Statements on best practices for research in precision medicine.