Method for Estimating the Self-Noise of the Measuring Channel on the Example of the SM-3KV Short-Period Seismometer

IF 0.3 Q4 GEOCHEMISTRY & GEOPHYSICS Seismic Instruments Pub Date : 2022-02-01 DOI:10.3103/S0747923922010030
A. N. Besedina, N. V. Kabychenko, S. G. Volosov
{"title":"Method for Estimating the Self-Noise of the Measuring Channel on the Example of the SM-3KV Short-Period Seismometer","authors":"A. N. Besedina,&nbsp;N. V. Kabychenko,&nbsp;S. G. Volosov","doi":"10.3103/S0747923922010030","DOIUrl":null,"url":null,"abstract":"<p>A new method for estimating the self-noise of the measuring channel of a seismometer is proposed, taking into account the linear relationship between the signal and noise. The method extracts noise using records of two identical measuring channels on the example of the SM-3KV short-period seismometer with an operating frequency range of 0.5–40 Hz. The method was tested on model signals for channel noise with a normal distribution, as well as microseismic noise records recorded on a pedestal by seismometers with locked and free inertial masses. Work with the model signals demonstrated that the accuracy of the numerical result when assessing the level of isolated noise depends on the value of the cross-correlation of the initial seismograms. Consideration of this dependence when calculating the self-noise of real measuring channels yields a noise level similar to the standard method based on separation of the incoherent component of the initial signals. The noise values in the 0.5–40 Hz range with a locked mass of the seismometer are 2.1 ± 0.3 nm/s according to the standard method and 2.2 ± 0.4 nm/s according to the new methods. The obtained values do not contradict the manufacturer’s data of the SM-3KV seismometer, which state that the self-noise level does not exceed 2 nm/s in the operating frequency range.</p>","PeriodicalId":45174,"journal":{"name":"Seismic Instruments","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismic Instruments","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0747923922010030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

A new method for estimating the self-noise of the measuring channel of a seismometer is proposed, taking into account the linear relationship between the signal and noise. The method extracts noise using records of two identical measuring channels on the example of the SM-3KV short-period seismometer with an operating frequency range of 0.5–40 Hz. The method was tested on model signals for channel noise with a normal distribution, as well as microseismic noise records recorded on a pedestal by seismometers with locked and free inertial masses. Work with the model signals demonstrated that the accuracy of the numerical result when assessing the level of isolated noise depends on the value of the cross-correlation of the initial seismograms. Consideration of this dependence when calculating the self-noise of real measuring channels yields a noise level similar to the standard method based on separation of the incoherent component of the initial signals. The noise values in the 0.5–40 Hz range with a locked mass of the seismometer are 2.1 ± 0.3 nm/s according to the standard method and 2.2 ± 0.4 nm/s according to the new methods. The obtained values do not contradict the manufacturer’s data of the SM-3KV seismometer, which state that the self-noise level does not exceed 2 nm/s in the operating frequency range.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以SM-3KV短周期地震仪为例,测量通道自噪声的估计方法
提出了一种考虑信号与噪声线性关系的地震仪测量通道自噪声估计方法。该方法以工作频率为0.5 ~ 40hz的SM-3KV短周期地震仪为例,利用两个相同测量通道的记录提取噪声。采用正态分布的信道噪声模型信号,以及锁惯性质量和自由惯性质量地震仪在台架上记录的微震噪声记录,对该方法进行了测试。对模型信号的研究表明,在评估孤立噪声水平时,数值结果的准确性取决于初始地震图的互相关值。在计算实际测量通道的自噪声时,考虑到这种依赖性,产生的噪声水平类似于基于分离初始信号的非相干分量的标准方法。根据标准方法,地震仪在0.5 ~ 40 Hz范围内的噪声值为2.1±0.3 nm/s,根据新方法,噪声值为2.2±0.4 nm/s。所获得的值与制造商的SM-3KV地震仪的数据不矛盾,该数据表明,在工作频率范围内,自噪声水平不超过2 nm/s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Seismic Instruments
Seismic Instruments GEOCHEMISTRY & GEOPHYSICS-
自引率
44.40%
发文量
45
期刊介绍: Seismic Instruments is a journal devoted to the description of geophysical instruments used in seismic research. In addition to covering the actual instruments for registering seismic waves, substantial room is devoted to solving instrumental-methodological problems of geophysical monitoring, applying various methods that are used to search for earthquake precursors, to studying earthquake nucleation processes and to monitoring natural and technogenous processes. The description of the construction, working elements, and technical characteristics of the instruments, as well as some results of implementation of the instruments and interpretation of the results are given. Attention is paid to seismic monitoring data and earthquake catalog quality Analysis.
期刊最新文献
Assessment of the Recording Capabilities of the Kolba Seismic Station for Seismic Monitoring in the Western Sector of the Russian Arctic Precision Solution of the VES Inverse Problem for Experimental Data of Long-Term Monitoring of the Earth’s Crust Estimating the Error in Solving the Inverse VES Problem for Precision Investigations of Time Variations in a Geoelectric Section with a Strong Seasonal Effect Neotectonic Stress State of the Chuya–Kurai Depression and Adjacent Structures (Southeastern Altai Mountains) Spectral Content of Acoustic Signals of Artificial Sandstone Samples under Uniaxial Loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1