{"title":"Central nervous system stimulants promote nerve cell death under continuous hypoxia.","authors":"Kei Ikeda-Murakami, Tomoya Ikeda, Miho Watanabe, Naoto Tani, Takaki Ishikawa","doi":"10.1007/s13577-022-00734-0","DOIUrl":null,"url":null,"abstract":"<p><p>Intake of central nervous system (CNS) stimulants causes hypoxia and brain edema, which results in nerve cell death. However, no study has yet investigated the direct and continuous effects on nerve cells of CNS stimulants under hypoxia. Thus, based on autopsy cases, the effects of CNS stimulant drugs on the CNS were examined. The pathological changes in cultured nerve cells when various CNS stimulants were added under a hypoxic condition were also investigated. Five groups (Group A, stimulants; Group B, stimulants with psychiatric drugs; Group C, caffeine; Group D, psychiatric drugs; and Group E, no drugs) according to the detected drugs in autopsy cases were compared, and brain edema was evaluated using morphological findings. Furthermore, the number of dead cultured nerve cells was counted after the addition of drugs (4-aminopyridine (4-AP), caffeine, and ephedrine) under hypoxia (3% O2). Staining with anti-receptor-interacting protein 3 (RIP3) and other associated stains was also performed to investigate the neuronal changes in the brain. Group A showed significantly more brain edema than the other groups. In the culture experiments, the ratio of nerve cell death after the addition of 4-AP was the highest in the hypoxic condition. Groups with stimulants detected were stained more strongly by RIP3 immunostaining than by other staining. Addition of stimulants to cultured nerve cells in a persistent hypoxic condition led to severe cytotoxicity and nerve cell death. These findings suggest that necroptosis is involved in nerve cell death due to the addition of CNS stimulants in the hypoxic condition.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 5","pages":"1391-1407"},"PeriodicalIF":4.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-022-00734-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Intake of central nervous system (CNS) stimulants causes hypoxia and brain edema, which results in nerve cell death. However, no study has yet investigated the direct and continuous effects on nerve cells of CNS stimulants under hypoxia. Thus, based on autopsy cases, the effects of CNS stimulant drugs on the CNS were examined. The pathological changes in cultured nerve cells when various CNS stimulants were added under a hypoxic condition were also investigated. Five groups (Group A, stimulants; Group B, stimulants with psychiatric drugs; Group C, caffeine; Group D, psychiatric drugs; and Group E, no drugs) according to the detected drugs in autopsy cases were compared, and brain edema was evaluated using morphological findings. Furthermore, the number of dead cultured nerve cells was counted after the addition of drugs (4-aminopyridine (4-AP), caffeine, and ephedrine) under hypoxia (3% O2). Staining with anti-receptor-interacting protein 3 (RIP3) and other associated stains was also performed to investigate the neuronal changes in the brain. Group A showed significantly more brain edema than the other groups. In the culture experiments, the ratio of nerve cell death after the addition of 4-AP was the highest in the hypoxic condition. Groups with stimulants detected were stained more strongly by RIP3 immunostaining than by other staining. Addition of stimulants to cultured nerve cells in a persistent hypoxic condition led to severe cytotoxicity and nerve cell death. These findings suggest that necroptosis is involved in nerve cell death due to the addition of CNS stimulants in the hypoxic condition.
期刊介绍:
Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well.
Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format.
Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.