{"title":"Genome-Wide Identification and Characterization of the Shaker-Type K+ Channel Genes in Prunus persica (L.) Batsch","authors":"Yong Yang, Jinlong Han, Yue Zhang, Shizhuo Lin, Meixia Liang, Lizi Zhao, Zhizhong Song","doi":"10.1155/2022/5053838","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Shaker-type K<sup>+</sup> channels are critical for plant K<sup>+</sup> acquisition and translocation that play key roles during plant growth and development. However, molecular mechanisms towards K<sup>+</sup> channels are extremely rare in fruit trees, especially in peach. In this study, we identified 7 putative shaker-type K<sup>+</sup> channel genes from peach, which were unevenly distributed on 5 chromosomes. The peach shaker K<sup>+</sup> channel proteins were classified into 5 subfamilies, I-V, and were tightly clustered with pear homologs in the phylogenetic tree. Various <i>cis</i>-acting regulatory elements were detected in the promoter region of the shaker-type K<sup>+</sup> channel genes, including phytohormone-responsive, abiotic stress-responsive, and development regulatory elements. The peach shaker K<sup>+</sup> channel genes were expressed differentially in distinct tissues, and <i>PpSPIK</i> was specifically expressed in the full-bloom flowers; <i>PpKAT1</i> and <i>PpGORK</i> were predominantly expressed in the leaves, while <i>PpAKT1</i>, <i>PpKC1</i>, and <i>PpSKOR</i> were majorly expressed in the roots. The peach shaker K<sup>+</sup> channel genes were differentially regulated by abiotic stresses in that K<sup>+</sup> deficiency, and ABA treatment mainly increased the shaker K<sup>+</sup> channel gene expression throughout the whole seedling, whereas NaCl and PEG treatment reduced the shaker K<sup>+</sup> channel gene expression, especially in the roots. Moreover, electrophysiological analysis demonstrated that PpSKOR is a typical voltage-dependent outwardly rectifying K<sup>+</sup> channel in peach. This study lays a molecular basis for further functional studies of the shaker-type K<sup>+</sup> channel genes in peach and provides a theoretical foundation for K<sup>+</sup> nutrition and balance research in fruit trees.</p>\n </div>","PeriodicalId":55239,"journal":{"name":"Comparative and Functional Genomics","volume":"2022 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926527/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative and Functional Genomics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2022/5053838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Shaker-type K+ channels are critical for plant K+ acquisition and translocation that play key roles during plant growth and development. However, molecular mechanisms towards K+ channels are extremely rare in fruit trees, especially in peach. In this study, we identified 7 putative shaker-type K+ channel genes from peach, which were unevenly distributed on 5 chromosomes. The peach shaker K+ channel proteins were classified into 5 subfamilies, I-V, and were tightly clustered with pear homologs in the phylogenetic tree. Various cis-acting regulatory elements were detected in the promoter region of the shaker-type K+ channel genes, including phytohormone-responsive, abiotic stress-responsive, and development regulatory elements. The peach shaker K+ channel genes were expressed differentially in distinct tissues, and PpSPIK was specifically expressed in the full-bloom flowers; PpKAT1 and PpGORK were predominantly expressed in the leaves, while PpAKT1, PpKC1, and PpSKOR were majorly expressed in the roots. The peach shaker K+ channel genes were differentially regulated by abiotic stresses in that K+ deficiency, and ABA treatment mainly increased the shaker K+ channel gene expression throughout the whole seedling, whereas NaCl and PEG treatment reduced the shaker K+ channel gene expression, especially in the roots. Moreover, electrophysiological analysis demonstrated that PpSKOR is a typical voltage-dependent outwardly rectifying K+ channel in peach. This study lays a molecular basis for further functional studies of the shaker-type K+ channel genes in peach and provides a theoretical foundation for K+ nutrition and balance research in fruit trees.