Ablation of FAM20C caused short root defects via suppressing the BMP signaling pathway in mice.

IF 17.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-11-01 Epub Date: 2022-03-22 DOI:10.1007/s00056-022-00386-7
Lili Li, Peihong Liu, Xuechao Lv, Tianliang Yu, Xingai Jin, Rui Wang, Xiaohua Xie, Qingshan Wang, Yingqun Liu, Wuliji Saiyin
{"title":"Ablation of FAM20C caused short root defects via suppressing the BMP signaling pathway in mice.","authors":"Lili Li,&nbsp;Peihong Liu,&nbsp;Xuechao Lv,&nbsp;Tianliang Yu,&nbsp;Xingai Jin,&nbsp;Rui Wang,&nbsp;Xiaohua Xie,&nbsp;Qingshan Wang,&nbsp;Yingqun Liu,&nbsp;Wuliji Saiyin","doi":"10.1007/s00056-022-00386-7","DOIUrl":null,"url":null,"abstract":"<p><p>Short root defects are prone to cause various periodontal diseases and lead to tooth loss in some serious cases. Studies about the mechanisms governing the development of the root are needed for a better understanding of the pathogenesis of short root defects. The protein family with sequence similarity 20 group C (FAM20C) is a Golgi casein kinase that has been well studied in the development of tooth crown formation. However, whether FAM20C plays a role in the development of tooth root is still unknown. Thus, we generated Sox2-Cre;Fam20c<sup>fl/fl</sup> (cKO) mice, in which Fam20c was ablated in both the dental epithelium and dental mesenchyme, and found that the cKO mice showed severe short root defects mainly by inhibiting the development of dental mesenchyme in the root region. In this investigation, we found morphological changes and differentiation defects, with reduced expression of dentin sialophosphoprotein (DSPP) in odontoblasts of the root region in cKO mice. Furthermore, the proliferation rate of apical papillary cells was reduced in the root of cKO mice. In addition, the levels of bone morphogenetic protein 4 (BMP4) and phospho-Smad1/5/8, and that of Osterix and Krüppel-like factor 4 (KLF4), two downstream target molecules of the BMP signaling pathway, were significantly reduced in the root of cKO mice. These results indicate that FAM20C plays an essential role in the development of the root by regulating the BMP signaling pathway.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"349-361"},"PeriodicalIF":17.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00056-022-00386-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

Short root defects are prone to cause various periodontal diseases and lead to tooth loss in some serious cases. Studies about the mechanisms governing the development of the root are needed for a better understanding of the pathogenesis of short root defects. The protein family with sequence similarity 20 group C (FAM20C) is a Golgi casein kinase that has been well studied in the development of tooth crown formation. However, whether FAM20C plays a role in the development of tooth root is still unknown. Thus, we generated Sox2-Cre;Fam20cfl/fl (cKO) mice, in which Fam20c was ablated in both the dental epithelium and dental mesenchyme, and found that the cKO mice showed severe short root defects mainly by inhibiting the development of dental mesenchyme in the root region. In this investigation, we found morphological changes and differentiation defects, with reduced expression of dentin sialophosphoprotein (DSPP) in odontoblasts of the root region in cKO mice. Furthermore, the proliferation rate of apical papillary cells was reduced in the root of cKO mice. In addition, the levels of bone morphogenetic protein 4 (BMP4) and phospho-Smad1/5/8, and that of Osterix and Krüppel-like factor 4 (KLF4), two downstream target molecules of the BMP signaling pathway, were significantly reduced in the root of cKO mice. These results indicate that FAM20C plays an essential role in the development of the root by regulating the BMP signaling pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FAM20C的消融通过抑制小鼠的BMP信号通路引起短根缺陷。
短根缺损容易引起各种牙周疾病,严重时会导致牙齿脱落。为了更好地了解短根缺陷的发病机制,需要研究根发育的机制。具有序列相似性的蛋白质家族20组C(FAM20C)是一种高尔基酪蛋白激酶,在牙冠形成的发育过程中得到了很好的研究。然而,FAM20C是否在牙根发育中发挥作用尚不清楚。因此,我们生成了Sox2-Cre;Fam20cfl/fl(cKO)小鼠,其中Fam20c在牙上皮和牙间充质中均被消融,并发现cKO小鼠表现出严重的短根缺陷,主要是通过抑制根区牙间充的发育。在本研究中,我们发现了cKO小鼠根区成牙本质细胞中牙本质唾液磷蛋白(DSPP)表达减少的形态变化和分化缺陷。此外,cKO小鼠根部顶端乳头状细胞的增殖率降低。此外,在cKO小鼠的根中,骨形态发生蛋白4(BMP4)和磷酸-Smad1/5/8的水平,以及BMP信号通路的两个下游靶分子Osterix和Krüppel样因子4(KLF4)的水平显著降低。这些结果表明,FAM20C通过调节BMP信号通路在根的发育中发挥着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Electrochemical Control of Fluorescence Emission: From Intensity Modulation to Single Molecule Switching for Applications in Light Microscopy. Ordering Covalent–Organic Frameworks toward Next-Generation Nanofiltration Molecular-Level Decoding of Electron Transfer Dynamics in Metal Nanoclusters Ultraconformal Carbon-Based Biointerfacing Electrodes for Cognition Study. Theoretical Insights on the Regulatory Mechanisms of Structure and Doping on the Photoluminescence of Ligand Protected Gold Nanoclusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1