M. E. Astashev, D. A. Serov, R. M. Sarimov, S. V. Gudkov
{"title":"Influence of the Vibration Impact Mode on the Spontaneous Chemiluminescence of Aqueous Protein Solutions","authors":"M. E. Astashev, D. A. Serov, R. M. Sarimov, S. V. Gudkov","doi":"10.3103/S1541308X23030020","DOIUrl":null,"url":null,"abstract":"<p>A characteristic feature of water and aqueous solutions is spontaneous chemiluminescence. Previously we have discovered the phenomenon of activation of the spontaneous chemiluminescence of water during shaking, with subsequent decreasing chemiluminescence intensity and reaching a stationary level. It is unclear how spontaneous chemiluminescence of water depends on the shaking conditions. It is also of interest how such physical factors as mechanical shaking or alternating magnetic field may affect the chemiluminescence in solutions with biological objects, for example, in aqueous protein solutions. In this study we investigated the dependence of the spontaneous chemiluminescence of bovine serum albumin solution on the mechanical impact conditions (frequency, amplitude, and duration), as well as the influence of ac magnetic field on the spontaneous chemiluminescence of immunoglobulin G solution. In the case of albumin solution a vibration impact with an amplitude of 12 mm caused a decrease in the chemiluminescence intensity in comparison with a control albumin sample, which was not exposed to vibrations. The severity of the effect was independent of the time and frequency of the vibration impact. Shaking with a frequency of 30 Hz and an amplitude of 2.3 mm increased the average chemiluminescence intensity. Spontaneous chemiluminescence of water depends to a greater extent on the amplitude and duration of the mechanical impact rather than on its frequency. The chemiluminescence intensity of a bovine serum albumin solution with a concentration of 1 mg/mL decreased in comparison with the check sample in all shaking modes. The most pronounced effects were observed for an amplitude of 12 mm and/or a frequency of 30 Hz. Time dependence was observed for the mode with an amplitude of 12 mm and a frequency of 30 Hz. Therefore, the spontaneous chemiluminescence of aqueous protein solutions depends to a greater extent on the amplitude and vibration frequency and to a lesser extent on the impact duration. The influence of ac magnetic field on the physical characteristics of water is described. We found that the magnetic field did not affect the water chemiluminescence parameters but changed the intensity and RMS deviation of the chemiluminescence intensity of IgG aqueous solutions. The effect severity depended on both the frequency of applied ac magnetic field and on the protein concentration.</p>","PeriodicalId":732,"journal":{"name":"Physics of Wave Phenomena","volume":"31 3","pages":"189 - 199"},"PeriodicalIF":1.1000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Wave Phenomena","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S1541308X23030020","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
A characteristic feature of water and aqueous solutions is spontaneous chemiluminescence. Previously we have discovered the phenomenon of activation of the spontaneous chemiluminescence of water during shaking, with subsequent decreasing chemiluminescence intensity and reaching a stationary level. It is unclear how spontaneous chemiluminescence of water depends on the shaking conditions. It is also of interest how such physical factors as mechanical shaking or alternating magnetic field may affect the chemiluminescence in solutions with biological objects, for example, in aqueous protein solutions. In this study we investigated the dependence of the spontaneous chemiluminescence of bovine serum albumin solution on the mechanical impact conditions (frequency, amplitude, and duration), as well as the influence of ac magnetic field on the spontaneous chemiluminescence of immunoglobulin G solution. In the case of albumin solution a vibration impact with an amplitude of 12 mm caused a decrease in the chemiluminescence intensity in comparison with a control albumin sample, which was not exposed to vibrations. The severity of the effect was independent of the time and frequency of the vibration impact. Shaking with a frequency of 30 Hz and an amplitude of 2.3 mm increased the average chemiluminescence intensity. Spontaneous chemiluminescence of water depends to a greater extent on the amplitude and duration of the mechanical impact rather than on its frequency. The chemiluminescence intensity of a bovine serum albumin solution with a concentration of 1 mg/mL decreased in comparison with the check sample in all shaking modes. The most pronounced effects were observed for an amplitude of 12 mm and/or a frequency of 30 Hz. Time dependence was observed for the mode with an amplitude of 12 mm and a frequency of 30 Hz. Therefore, the spontaneous chemiluminescence of aqueous protein solutions depends to a greater extent on the amplitude and vibration frequency and to a lesser extent on the impact duration. The influence of ac magnetic field on the physical characteristics of water is described. We found that the magnetic field did not affect the water chemiluminescence parameters but changed the intensity and RMS deviation of the chemiluminescence intensity of IgG aqueous solutions. The effect severity depended on both the frequency of applied ac magnetic field and on the protein concentration.
期刊介绍:
Physics of Wave Phenomena publishes original contributions in general and nonlinear wave theory, original experimental results in optics, acoustics and radiophysics. The fields of physics represented in this journal include nonlinear optics, acoustics, and radiophysics; nonlinear effects of any nature including nonlinear dynamics and chaos; phase transitions including light- and sound-induced; laser physics; optical and other spectroscopies; new instruments, methods, and measurements of wave and oscillatory processes; remote sensing of waves in natural media; wave interactions in biophysics, econophysics and other cross-disciplinary areas.