{"title":"Calcium signaling in prostate cancer cells of increasing malignancy.","authors":"Carla Marchetti","doi":"10.1515/bmc-2022-0012","DOIUrl":null,"url":null,"abstract":"<p><p>Calcium signaling controls a large variety of cell functions, including proliferation and apoptosis, and plays a major role in neoplastic transformation. Prostate cancer (PCa) is one of the most common malignancies in men. The transition to castration-resistant prostate cancer (CRPC), a lethal form that is still lacking an effective cure, could be influenced by fine tuning intracellular calcium ([Ca<sup>2+</sup>]<sub>i</sub>) homeostasis. This study investigates [Ca<sup>2+</sup>]<sub>i</sub> dynamics in metastatic PCa cell lines that mimic the progression of PCa to CRPC: (i) well differentiated LNCaP cells that require androgen for survival, and (ii) poorly differentiated, highly aggressive androgen-insensitive prostate cancer (AIPC) PC3 and DU145 cells. In AIPC cells, ATP induces a fast rise in [Ca<sup>2+</sup>]<sub>i</sub>, due to release from intracellular stores and sensitive to phospholipase C inhibitors, while LNCaP cells do not respond to ATP challenge. Moreover, AIPC cells showed a reduced capacity to store Ca<sup>2+</sup> in thapsigargin-sensitive stores and limited store-operated calcium entry, with respect to androgen-dependent LNCaP cells. Finally, green tea extract causes [Ca<sup>2+</sup>]<sub>i</sub> elevation and inhibits proliferation in PC3 and DU145 cells, but is ineffective in LNCaP cells. The consequences of these differences are discussed and interpreted in this study with reference to previously proposed models for Ca<sup>2+</sup> dependence of prostate carcinogenesis.</p>","PeriodicalId":38392,"journal":{"name":"Biomolecular Concepts","volume":" ","pages":"156-163"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular Concepts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmc-2022-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 6
Abstract
Calcium signaling controls a large variety of cell functions, including proliferation and apoptosis, and plays a major role in neoplastic transformation. Prostate cancer (PCa) is one of the most common malignancies in men. The transition to castration-resistant prostate cancer (CRPC), a lethal form that is still lacking an effective cure, could be influenced by fine tuning intracellular calcium ([Ca2+]i) homeostasis. This study investigates [Ca2+]i dynamics in metastatic PCa cell lines that mimic the progression of PCa to CRPC: (i) well differentiated LNCaP cells that require androgen for survival, and (ii) poorly differentiated, highly aggressive androgen-insensitive prostate cancer (AIPC) PC3 and DU145 cells. In AIPC cells, ATP induces a fast rise in [Ca2+]i, due to release from intracellular stores and sensitive to phospholipase C inhibitors, while LNCaP cells do not respond to ATP challenge. Moreover, AIPC cells showed a reduced capacity to store Ca2+ in thapsigargin-sensitive stores and limited store-operated calcium entry, with respect to androgen-dependent LNCaP cells. Finally, green tea extract causes [Ca2+]i elevation and inhibits proliferation in PC3 and DU145 cells, but is ineffective in LNCaP cells. The consequences of these differences are discussed and interpreted in this study with reference to previously proposed models for Ca2+ dependence of prostate carcinogenesis.
Biomolecular ConceptsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
5.30
自引率
0.00%
发文量
27
审稿时长
12 weeks
期刊介绍:
BioMolecular Concepts is a peer-reviewed open access journal fostering the integration of different fields of biomolecular research. The journal aims to provide expert summaries from prominent researchers, and conclusive extensions of research data leading to new and original, testable hypotheses. Aspects of research that can promote related fields, and lead to novel insight into biological mechanisms or potential medical applications are of special interest. Original research articles reporting new data of broad significance are also welcome. Topics: -cellular and molecular biology- genetics and epigenetics- biochemistry- structural biology- neurosciences- developmental biology- molecular medicine- pharmacology- microbiology- plant biology and biotechnology.