Microfluidics in Biotechnology: Overview and Status Quo.

4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Advances in biochemical engineering/biotechnology Pub Date : 2022-01-01 DOI:10.1007/10_2022_206
Janina Bahnemann, Alexander Grünberger
{"title":"Microfluidics in Biotechnology: Overview and Status Quo.","authors":"Janina Bahnemann,&nbsp;Alexander Grünberger","doi":"10.1007/10_2022_206","DOIUrl":null,"url":null,"abstract":"<p><p>Microfluidics has emerged as a powerful tool, enabling biotechnological processes to be performed on a microscale where certain physical processes (such as laminar flow, surface-to-volume ratio, and surface interactions) become dominant factors. At the same time, volumes and assay times are also reduced in microscale - which can substantially lower experimental costs. A decade ago, most microfluidic systems were only used for proof-of-concept studies; today, a wide array of microfluidic systems have been deployed to tackle various biotechnological research questions - especially regarding the analysis, screening, and understanding of cellular systems. Examples cover all biotechnological areas, from diagnostic applications in the field of medical biotechnology to the screening of potentially useful cells in the field of industrial biotechnology. As part of this review, we provide a brief introduction to microfluidics technology (including the vision of Lab-on-a-chip (LOC) systems) and survey some of the most notable applications of microfluidic technology in biotechnology to date.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"1-16"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biochemical engineering/biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/10_2022_206","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1

Abstract

Microfluidics has emerged as a powerful tool, enabling biotechnological processes to be performed on a microscale where certain physical processes (such as laminar flow, surface-to-volume ratio, and surface interactions) become dominant factors. At the same time, volumes and assay times are also reduced in microscale - which can substantially lower experimental costs. A decade ago, most microfluidic systems were only used for proof-of-concept studies; today, a wide array of microfluidic systems have been deployed to tackle various biotechnological research questions - especially regarding the analysis, screening, and understanding of cellular systems. Examples cover all biotechnological areas, from diagnostic applications in the field of medical biotechnology to the screening of potentially useful cells in the field of industrial biotechnology. As part of this review, we provide a brief introduction to microfluidics technology (including the vision of Lab-on-a-chip (LOC) systems) and survey some of the most notable applications of microfluidic technology in biotechnology to date.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物技术中的微流体:综述与现状。
微流体已经成为一种强大的工具,使生物技术过程能够在微尺度上进行,其中某些物理过程(如层流、表面与体积比和表面相互作用)成为主导因素。同时,微尺度的体积和分析时间也减少了,这可以大大降低实验成本。十年前,大多数微流体系统仅用于概念验证研究;今天,广泛的微流体系统已被用于解决各种生物技术研究问题-特别是关于细胞系统的分析,筛选和理解。例子涵盖所有生物技术领域,从医学生物技术领域的诊断应用到工业生物技术领域中潜在有用细胞的筛选。作为本文的一部分,我们简要介绍了微流控技术(包括芯片实验室(Lab-on-a-chip, LOC)系统的前景),并概述了迄今为止微流控技术在生物技术中的一些最显著的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in biochemical engineering/biotechnology
Advances in biochemical engineering/biotechnology 工程技术-生物工程与应用微生物
CiteScore
5.70
自引率
0.00%
发文量
29
期刊介绍: Advances in Biochemical Engineering/Biotechnology reviews actual trends in modern biotechnology. Its aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required for chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. They give the state-of-the-art of a topic in a comprehensive way thus being a valuable source for the next 3 - 5 years. It also discusses new discoveries and applications.
期刊最新文献
Vibrio natriegens: Application of a Fast-Growing Halophilic Bacterium. From Knallgas Bacterium to Promising Biomanufacturing Host: The Evolution of Cupriavidus necator. Methanothermobacter thermautotrophicus and Alternative Methanogens: Archaea-Based Production. Phytoextraction Options. Microalgae: A Biological Tool for Removal and Recovery of Potentially Toxic Elements in Wastewater Treatment Photobioreactors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1