The therapeutic prospects and challenges of human neural stem cells for the treatment of Alzheimer's Disease.

IF 4 Q2 CELL & TISSUE ENGINEERING Cell Regeneration Pub Date : 2022-09-02 DOI:10.1186/s13619-022-00128-5
Chunmei Yue, Su Feng, Yingying Chen, Naihe Jing
{"title":"The therapeutic prospects and challenges of human neural stem cells for the treatment of Alzheimer's Disease.","authors":"Chunmei Yue,&nbsp;Su Feng,&nbsp;Yingying Chen,&nbsp;Naihe Jing","doi":"10.1186/s13619-022-00128-5","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder associated with aging. Due to its insidious onset, protracted progression, and unclear pathogenesis, it is considered one of the most obscure and intractable brain disorders, and currently, there are no effective therapies for it. Convincing evidence indicates that the irreversible decline of cognitive abilities in patients coincides with the deterioration and degeneration of neurons and synapses in the AD brain. Human neural stem cells (NSCs) hold the potential to functionally replace lost neurons, reinforce impaired synaptic networks, and repair the damaged AD brain. They have therefore received extensive attention as a possible source of donor cells for cellular replacement therapies for AD. Here, we review the progress in NSC-based transplantation studies in animal models of AD and assess the therapeutic advantages and challenges of human NSCs as donor cells. We then formulate a promising transplantation approach for the treatment of human AD, which would help to explore the disease-modifying cellular therapeutic strategy for the treatment of human AD.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9437172/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13619-022-00128-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 4

Abstract

Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder associated with aging. Due to its insidious onset, protracted progression, and unclear pathogenesis, it is considered one of the most obscure and intractable brain disorders, and currently, there are no effective therapies for it. Convincing evidence indicates that the irreversible decline of cognitive abilities in patients coincides with the deterioration and degeneration of neurons and synapses in the AD brain. Human neural stem cells (NSCs) hold the potential to functionally replace lost neurons, reinforce impaired synaptic networks, and repair the damaged AD brain. They have therefore received extensive attention as a possible source of donor cells for cellular replacement therapies for AD. Here, we review the progress in NSC-based transplantation studies in animal models of AD and assess the therapeutic advantages and challenges of human NSCs as donor cells. We then formulate a promising transplantation approach for the treatment of human AD, which would help to explore the disease-modifying cellular therapeutic strategy for the treatment of human AD.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类神经干细胞治疗阿尔茨海默病的前景和挑战。
阿尔茨海默病(AD)是一种与衰老相关的多因素神经退行性疾病。由于其起病隐匿,进展缓慢,发病机制不明确,被认为是最晦涩难治的脑部疾病之一,目前尚无有效的治疗方法。令人信服的证据表明,患者认知能力的不可逆下降与阿尔茨海默病大脑中神经元和突触的恶化和变性是一致的。人类神经干细胞(NSCs)具有功能上替代丢失的神经元、强化受损突触网络和修复受损AD大脑的潜力。因此,它们作为AD细胞替代疗法的可能供体细胞来源受到了广泛关注。在这里,我们回顾了基于NSCs的AD动物模型移植研究的进展,并评估了人类NSCs作为供体细胞的治疗优势和挑战。然后,我们制定了一种治疗人类阿尔茨海默病的有希望的移植方法,这将有助于探索治疗人类阿尔茨海默病的疾病修饰细胞治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Regeneration
Cell Regeneration Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍: Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics: ◎ Embryonic stem cells ◎ Induced pluripotent stem cells ◎ Tissue-specific stem cells ◎ Tissue or organ regeneration ◎ Methodology ◎ Biomaterials and regeneration ◎ Clinical translation or application in medicine
期刊最新文献
Application and new findings of scRNA-seq and ST-seq in prostate cancer. Beyond resorption: osteoclasts as drivers of bone formation. Subtype-specific neurons from patient iPSCs display distinct neuropathological features of Alzheimer's disease. Targeting senescent cells in aging and COVID-19: from cellular mechanisms to therapeutic opportunities. Chromatin remodeling in tissue stem cell fate determination.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1