{"title":"Fabrication of high efficiency coronavirus filter using activated carbon nanoparticles.","authors":"Y Fekri Avval, G Behzadi Pour, M Manouchehri Aram","doi":"10.1007/s40089-022-00379-9","DOIUrl":null,"url":null,"abstract":"<p><p>In this study design and fabrication of coronavirus filter based on the cellulose and carbon nanomaterials have been investigated. Particulate matter (PM) corona virus has attracted a lot of attention due to its great threat to human health. Nanoparticles are intertwined with fibers and form highly porous air filter paper. The structure of the filter has been characterized using scanning electron microscope (SEM) and Brunauer-Emmett-Teller (BET) analysis. In addition, by optimization with activated carbon (AC) nanoparticles, the prepared AC air filter paper shows a high removal efficiency of more than 95% for PM 100 nm. More importantly, this filter shows less pressure drop and less thickness. This filter has a positive effect on the prevention of this disease during the coronavirus epidemic and show high absorption efficiency air filter for PM more than 100 nm.</p>","PeriodicalId":14440,"journal":{"name":"International Nano Letters","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418654/pdf/","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Nano Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40089-022-00379-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 9
Abstract
In this study design and fabrication of coronavirus filter based on the cellulose and carbon nanomaterials have been investigated. Particulate matter (PM) corona virus has attracted a lot of attention due to its great threat to human health. Nanoparticles are intertwined with fibers and form highly porous air filter paper. The structure of the filter has been characterized using scanning electron microscope (SEM) and Brunauer-Emmett-Teller (BET) analysis. In addition, by optimization with activated carbon (AC) nanoparticles, the prepared AC air filter paper shows a high removal efficiency of more than 95% for PM 100 nm. More importantly, this filter shows less pressure drop and less thickness. This filter has a positive effect on the prevention of this disease during the coronavirus epidemic and show high absorption efficiency air filter for PM more than 100 nm.
期刊介绍:
The overall aim of the International Nano Letters is to bring science and applications together on nanoscale and nanostructured materials with emphasis on synthesis, processing, characterization, and applications of materials containing true nanosize dimensions or nanostructures that enable novel/enhanced properties or functions. It is directed at both academic researchers and practicing engineers. International Nano Letters is covering fundamental and applied research in all disciplines of science, engineering and medicine. INL publishes all aspects of nanoscale science and technology dealing with materials synthesis, processing, nanofabrication, nano-polymer, nano-catalyst, nano-particles, nano-probes, spectroscopy, properties, biological systems, nano-structures, theory and computation, nano-electronics, nano-optics, nano-mechanics, nano-devices, nano-detection, nano-biotechnology, nano-medicine, nano-drug delivery, nano-toxicology. All articles should emphasize original results relating to experimental, theoretical, computational, and/or applications of nanomaterials. All contributions will be peer reviewed.