Itaconic acid production is regulated by LaeA in Aspergillus pseudoterreus

IF 3.7 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Metabolic Engineering Communications Pub Date : 2022-12-01 DOI:10.1016/j.mec.2022.e00203
Kyle R. Pomraning , Ziyu Dai , Nathalie Munoz , Young-Mo Kim , Yuqian Gao , Shuang Deng , Teresa Lemmon , Marie S. Swita , Jeremy D. Zucker , Joonhoon Kim , Stephen J. Mondo , Ellen Panisko , Meagan C. Burnet , Bobbie-Jo M. Webb-Robertson , Beth Hofstad , Scott E. Baker , Kristin E. Burnum-Johnson , Jon K. Magnuson , for the Agile BioFoundry
{"title":"Itaconic acid production is regulated by LaeA in Aspergillus pseudoterreus","authors":"Kyle R. Pomraning ,&nbsp;Ziyu Dai ,&nbsp;Nathalie Munoz ,&nbsp;Young-Mo Kim ,&nbsp;Yuqian Gao ,&nbsp;Shuang Deng ,&nbsp;Teresa Lemmon ,&nbsp;Marie S. Swita ,&nbsp;Jeremy D. Zucker ,&nbsp;Joonhoon Kim ,&nbsp;Stephen J. Mondo ,&nbsp;Ellen Panisko ,&nbsp;Meagan C. Burnet ,&nbsp;Bobbie-Jo M. Webb-Robertson ,&nbsp;Beth Hofstad ,&nbsp;Scott E. Baker ,&nbsp;Kristin E. Burnum-Johnson ,&nbsp;Jon K. Magnuson ,&nbsp;for the Agile BioFoundry","doi":"10.1016/j.mec.2022.e00203","DOIUrl":null,"url":null,"abstract":"<div><p>The global regulator LaeA controls secondary metabolism in diverse Aspergillus species. Here we explored its role in regulation of itaconic acid production in <em>Aspergillus pseudoterreus</em>. To understand its role in regulating metabolism, we deleted and overexpressed <em>laeA,</em> and assessed the transcriptome, proteome, and secreted metabolome prior to and during initiation of phosphate limitation induced itaconic acid production. We found that secondary metabolite clusters, including the itaconic acid biosynthetic gene cluster, are regulated by <em>laeA</em> and that <em>laeA</em> is required for high yield production of itaconic acid. Overexpression of LaeA improves itaconic acid yield at the expense of biomass by increasing the expression of key biosynthetic pathway enzymes and attenuating the expression of genes involved in phosphate acquisition and scavenging. Increased yield was observed in optimized conditions as well as conditions containing excess nutrients that may be present in inexpensive sugar containing feedstocks such as excess phosphate or complex nutrient sources. This suggests that global regulators of metabolism may be useful targets for engineering metabolic flux that is robust to environmental heterogeneity.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4e/ad/main.PMC9440423.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214030122000128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 7

Abstract

The global regulator LaeA controls secondary metabolism in diverse Aspergillus species. Here we explored its role in regulation of itaconic acid production in Aspergillus pseudoterreus. To understand its role in regulating metabolism, we deleted and overexpressed laeA, and assessed the transcriptome, proteome, and secreted metabolome prior to and during initiation of phosphate limitation induced itaconic acid production. We found that secondary metabolite clusters, including the itaconic acid biosynthetic gene cluster, are regulated by laeA and that laeA is required for high yield production of itaconic acid. Overexpression of LaeA improves itaconic acid yield at the expense of biomass by increasing the expression of key biosynthetic pathway enzymes and attenuating the expression of genes involved in phosphate acquisition and scavenging. Increased yield was observed in optimized conditions as well as conditions containing excess nutrients that may be present in inexpensive sugar containing feedstocks such as excess phosphate or complex nutrient sources. This suggests that global regulators of metabolism may be useful targets for engineering metabolic flux that is robust to environmental heterogeneity.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
假地曲霉衣康酸的产生受LaeA调控
全球调节剂LaeA控制着多种曲霉种的次级代谢。本文探讨了其在假地曲霉衣康酸生产调控中的作用。为了了解其在调节代谢中的作用,我们删除和过表达laeA,并在磷酸盐限制诱导衣康酸产生之前和开始期间评估转录组、蛋白质组和分泌代谢组。我们发现二级代谢产物簇,包括衣康酸生物合成基因簇,受laeA调控,laeA是衣康酸高产生产所必需的。LaeA的过表达增加了关键生物合成途径酶的表达,减弱了参与磷酸盐获取和清除的基因的表达,从而以牺牲生物量为代价提高衣康酸的产量。在优化条件下,以及在含有过量磷酸盐或复杂营养源等廉价糖原料中可能存在的过量营养条件下,观察到产量增加。这表明,代谢的全局调节因子可能是工程代谢通量的有用靶点,对环境异质性具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metabolic Engineering Communications
Metabolic Engineering Communications Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
13.30
自引率
1.90%
发文量
22
审稿时长
18 weeks
期刊介绍: Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.
期刊最新文献
Metabolic engineering of Acinetobacter baylyi ADP1 for naringenin production PEZy-miner: An artificial intelligence driven approach for the discovery of plastic-degrading enzyme candidates Production of (R)-citramalate by engineered Saccharomyces cerevisiae Engineering thioesterase as a driving force for novel itaconate production via its degradation scheme A comparative analysis of NADPH supply strategies in Saccharomyces cerevisiae: Production of d-xylitol from d-xylose as a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1