{"title":"COX-2 upregulation by tumour cells post-chemotherapy fuels the immune evasive dark side of cancer inflammation.","authors":"Charlotte R Bell, Santiago Zelenay","doi":"10.15698/cst2022.09.271","DOIUrl":null,"url":null,"abstract":"<p><p>Cytotoxic therapies, such as chemotherapy and radiotherapy, are mainstays of cancer treatment for both early and unresectable, advanced disease. In addition to debulking the tumour mass through direct killing of proliferating tumour cells, these treatments can promote tumour control via immune-stimulating effects. Nonetheless, chemoresistance and tumour relapse remain huge clinical problems, suggesting that induction of anti-cancer immunity post-cytotoxic therapy is often weak, not durable and/or overcome by immune evasive mechanisms. In our recent study (Nat Commun 13:2063), we demonstrate that cancer cell-intrinsic activation of the cyclooxygenase (COX)-2/prostaglandin E<sub>2</sub> (PGE<sub>2</sub>) pathway post-chemotherapy treatment is a prevalent phenomenon which profoundly alters the inflammatory properties of the treated cancer cells. Of particular translational relevance, our findings support a model whereby upregulation of COX-2 expression and activity post-chemotherapy impairs the efficacy of the combination of PD-1 blockade and chemotherapy. Accordingly, pharmacological inhibition of COX-2 with celecoxib, an anti-inflammatory drug already used clinically, unleashed tumour control in preclinical models when given alongside chemoimmunotherapy combinations.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9442149/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15698/cst2022.09.271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cytotoxic therapies, such as chemotherapy and radiotherapy, are mainstays of cancer treatment for both early and unresectable, advanced disease. In addition to debulking the tumour mass through direct killing of proliferating tumour cells, these treatments can promote tumour control via immune-stimulating effects. Nonetheless, chemoresistance and tumour relapse remain huge clinical problems, suggesting that induction of anti-cancer immunity post-cytotoxic therapy is often weak, not durable and/or overcome by immune evasive mechanisms. In our recent study (Nat Commun 13:2063), we demonstrate that cancer cell-intrinsic activation of the cyclooxygenase (COX)-2/prostaglandin E2 (PGE2) pathway post-chemotherapy treatment is a prevalent phenomenon which profoundly alters the inflammatory properties of the treated cancer cells. Of particular translational relevance, our findings support a model whereby upregulation of COX-2 expression and activity post-chemotherapy impairs the efficacy of the combination of PD-1 blockade and chemotherapy. Accordingly, pharmacological inhibition of COX-2 with celecoxib, an anti-inflammatory drug already used clinically, unleashed tumour control in preclinical models when given alongside chemoimmunotherapy combinations.
Cell StressBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
13.50
自引率
0.00%
发文量
21
审稿时长
15 weeks
期刊介绍:
Cell Stress is an open-access, peer-reviewed journal that is dedicated to publishing highly relevant research in the field of cellular pathology. The journal focuses on advancing our understanding of the molecular, mechanistic, phenotypic, and other critical aspects that underpin cellular dysfunction and disease. It specifically aims to foster cell biology research that is applicable to a range of significant human diseases, including neurodegenerative disorders, myopathies, mitochondriopathies, infectious diseases, cancer, and pathological aging.
The scope of Cell Stress is broad, welcoming submissions that represent a spectrum of research from fundamental to translational and clinical studies. The journal is a valuable resource for scientists, educators, and policymakers worldwide, as well as for any individual with an interest in cellular pathology. It serves as a platform for the dissemination of research findings that are instrumental in the investigation, classification, diagnosis, and therapeutic management of major diseases. By being open-access, Cell Stress ensures that its content is freely available to a global audience, thereby promoting international scientific collaboration and accelerating the exchange of knowledge within the research community.