Reward-Penalty Weighted Ensemble for Emotion State Classification from Multi-Modal Data Streams.

IF 6.4 International journal of neural systems Pub Date : 2022-12-01 Epub Date: 2022-09-21 DOI:10.1142/S0129065722500496
Arijit Nandi, Fatos Xhafa, Laia Subirats, Santi Fort
{"title":"Reward-Penalty Weighted Ensemble for Emotion State Classification from Multi-Modal Data Streams.","authors":"Arijit Nandi,&nbsp;Fatos Xhafa,&nbsp;Laia Subirats,&nbsp;Santi Fort","doi":"10.1142/S0129065722500496","DOIUrl":null,"url":null,"abstract":"<p><p>Researchers have shown the limitations of using the single-modal data stream for emotion classification. Multi-modal data streams are therefore deemed necessary to improve the accuracy and performance of online emotion classifiers. An online decision ensemble is a widely used approach to classify emotions in real-time using multi-modal data streams. There is a plethora of online ensemble approaches; these approaches use a fixed parameter ([Formula: see text]) to adjust the weights of each classifier (called penalty) in case of wrong classification and no reward for a good performing classifier. Also, the performance of the ensemble depends on the [Formula: see text], which is set using trial and error. This paper presents a new Reward-Penalty-based Weighted Ensemble (RPWE) for real-time multi-modal emotion classification using multi-modal physiological data streams. The proposed RPWE is thoroughly tested using two prevalent benchmark data sets, DEAP and AMIGOS. The first experiment confirms the impact of the base stream classifier with RPWE for emotion classification in real-time. The RPWE is compared with different popular and widely used online ensemble approaches using multi-modal data streams in the second experiment. The average balanced accuracy, F1-score results showed the usefulness and robustness of RPWE in emotion classification in real-time from the multi-modal data stream.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2250049"},"PeriodicalIF":6.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065722500496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Researchers have shown the limitations of using the single-modal data stream for emotion classification. Multi-modal data streams are therefore deemed necessary to improve the accuracy and performance of online emotion classifiers. An online decision ensemble is a widely used approach to classify emotions in real-time using multi-modal data streams. There is a plethora of online ensemble approaches; these approaches use a fixed parameter ([Formula: see text]) to adjust the weights of each classifier (called penalty) in case of wrong classification and no reward for a good performing classifier. Also, the performance of the ensemble depends on the [Formula: see text], which is set using trial and error. This paper presents a new Reward-Penalty-based Weighted Ensemble (RPWE) for real-time multi-modal emotion classification using multi-modal physiological data streams. The proposed RPWE is thoroughly tested using two prevalent benchmark data sets, DEAP and AMIGOS. The first experiment confirms the impact of the base stream classifier with RPWE for emotion classification in real-time. The RPWE is compared with different popular and widely used online ensemble approaches using multi-modal data streams in the second experiment. The average balanced accuracy, F1-score results showed the usefulness and robustness of RPWE in emotion classification in real-time from the multi-modal data stream.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于奖罚加权集成的多模态数据流情绪状态分类。
研究人员已经证明了使用单模态数据流进行情绪分类的局限性。因此,多模态数据流被认为是提高在线情感分类器的准确性和性能所必需的。在线决策集成是一种广泛使用的多模态数据流实时情绪分类方法。有太多的在线集成方法;这些方法使用一个固定的参数(公式:见文本)来调整每个分类器的权重(称为惩罚),以防分类错误,并且对表现良好的分类器没有奖励。此外,集成的性能取决于[公式:见文本],它是通过试错法设定的。基于多模态生理数据流,提出了一种基于奖罚加权集成的实时多模态情绪分类方法。使用两个流行的基准数据集(DEAP和AMIGOS)对建议的RPWE进行了彻底的测试。第一个实验验证了基于RPWE的基流分类器对实时情绪分类的影响。在第二个实验中,将RPWE与不同的流行和广泛使用的多模态数据流在线集成方法进行了比较。平均平衡准确率和f1评分结果表明RPWE在多模态数据流中实时情绪分类的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Driver Emotion Recognition Using Multimodal Signals by Combining Conformer and Autoformer. Knowledge Graph Embedding Model Based on Spiking Neural-like Graph Attention Network for Relation Prediction. A Novel Morlet Convolutional Neural Network. Dynamic Stereoelectroencephalography-Based Phase-Amplitude Coupling in Cingulate Epilepsy. Lightweight Seizure Prediction Model based on Kernel-Enhanced Global Temporal Attention.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1