Norberto Pantoja-Galicia, Olivia I Okereke, Deborah Blacker, Rebecca A Betensky
{"title":"Concordance Measures and Time-Dependent ROC Methods.","authors":"Norberto Pantoja-Galicia, Olivia I Okereke, Deborah Blacker, Rebecca A Betensky","doi":"10.1080/24709360.2021.1926189","DOIUrl":null,"url":null,"abstract":"<p><p>The receiver operating characteristic (ROC) curve displays sensitivity versus 1-specificity over a set of thresholds. The area under the ROC curve (AUC) is a global scalar summary of this curve. In the context of time-dependent ROC methods, we are interested in global scalar measures that summarize sequences of time-dependent AUCs over time. The concordance probability is a candidate for such purposes. The concordance probability can provide a global assessment of the discrimination ability of a test for an event that occurs at random times and may be right censored. If the test adequately differentiates between subjects who survive longer times and those who survive shorter times, this will assist clinical decisions. In this context the concordance probability may support assessment of precision medicine tools based on prognostic biomarkers models for overall survival. Definitions of time-dependent sensitivity and specificity are reviewed. Some connections between such definitions and concordance measures are also reviewed and we establish new connections via new measures of global concordance. We explore the relationship between such measures and their corresponding time-dependent AUC. To illustrate these concepts, an application in the context of Alzheimer's disease is presented.</p>","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":" ","pages":"232-249"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523576/pdf/nihms-1701256.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2021.1926189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
The receiver operating characteristic (ROC) curve displays sensitivity versus 1-specificity over a set of thresholds. The area under the ROC curve (AUC) is a global scalar summary of this curve. In the context of time-dependent ROC methods, we are interested in global scalar measures that summarize sequences of time-dependent AUCs over time. The concordance probability is a candidate for such purposes. The concordance probability can provide a global assessment of the discrimination ability of a test for an event that occurs at random times and may be right censored. If the test adequately differentiates between subjects who survive longer times and those who survive shorter times, this will assist clinical decisions. In this context the concordance probability may support assessment of precision medicine tools based on prognostic biomarkers models for overall survival. Definitions of time-dependent sensitivity and specificity are reviewed. Some connections between such definitions and concordance measures are also reviewed and we establish new connections via new measures of global concordance. We explore the relationship between such measures and their corresponding time-dependent AUC. To illustrate these concepts, an application in the context of Alzheimer's disease is presented.