Arijit Chakraborty, Dipankar Das, Sajal Mitra, Debashis De, Anindya J Pal
{"title":"Forecasting adversities of COVID-19 waves in India using intelligent computing.","authors":"Arijit Chakraborty, Dipankar Das, Sajal Mitra, Debashis De, Anindya J Pal","doi":"10.1007/s11334-022-00486-y","DOIUrl":null,"url":null,"abstract":"<p><p>The second wave of the COVID-19 pandemic outburst triggered enormously all over India. This ill-fated and fatal brawl affected millions of Indian citizens, with many active and infected Indians struggling to recover from this deadly disease to date, leading to a grief situation. The present situation warrants developing a robust and sound forecasting model to evaluate the adversities of the epidemic with reasonable accuracy to assist officials in curbing this hazard. Consequently, we employed Auto-ARIMA, Auto-ETS, Auto-MLP, Auto-ELM, AM, MLP and proposed ELM methods for assessing accumulative infected COVID-19 individuals by the end of July 2021. We made 90 days of advanced forecasting, i.e., up to 24 July 2021, for the number of cumulative infected COVID-19 cases of India using all seven methods in 15 days' intervals. We fine-tuned the hyper-parameters to enhance the prediction performance of these models and observed that the proposed ELM model offers satisfactory accuracy with MAPE of 5.01, and it rendered better accuracy than the other six models. To comprehend the dataset's nature, five features are extracted. The resulting feature values encouraged further investigation of the models for an updated dataset, where the proposed model provides encouraging results.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"1-17"},"PeriodicalIF":17.7000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512957/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11334-022-00486-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The second wave of the COVID-19 pandemic outburst triggered enormously all over India. This ill-fated and fatal brawl affected millions of Indian citizens, with many active and infected Indians struggling to recover from this deadly disease to date, leading to a grief situation. The present situation warrants developing a robust and sound forecasting model to evaluate the adversities of the epidemic with reasonable accuracy to assist officials in curbing this hazard. Consequently, we employed Auto-ARIMA, Auto-ETS, Auto-MLP, Auto-ELM, AM, MLP and proposed ELM methods for assessing accumulative infected COVID-19 individuals by the end of July 2021. We made 90 days of advanced forecasting, i.e., up to 24 July 2021, for the number of cumulative infected COVID-19 cases of India using all seven methods in 15 days' intervals. We fine-tuned the hyper-parameters to enhance the prediction performance of these models and observed that the proposed ELM model offers satisfactory accuracy with MAPE of 5.01, and it rendered better accuracy than the other six models. To comprehend the dataset's nature, five features are extracted. The resulting feature values encouraged further investigation of the models for an updated dataset, where the proposed model provides encouraging results.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.