{"title":"An assessment of random forest technique using simulation study: illustration with infant mortality in Bangladesh.","authors":"Atikur Rahman, Zakir Hossain, Enamul Kabir, Rumana Rois","doi":"10.1007/s13755-022-00180-0","DOIUrl":null,"url":null,"abstract":"<p><p>We aimed to assess different machine learning techniques for predicting infant mortality (<1 year) in Bangladesh. The decision tree (DT), random forest (RF), support vector machine (SVM) and logistic regression (LR) approaches were evaluated through accuracy, sensitivity, specificity, precision, F1-score, receiver operating characteristics curve and <i>k</i>-fold cross-validation via simulations. The Boruta algorithm and chi-square ( <math><msup><mi>χ</mi> <mn>2</mn></msup> </math> ) test were used for features selection of infant mortality. Overall, the RF technique (Boruta: accuracy = 0.8890, sensitivity = 0.0480, specificity = 0.9789, precision = 0.1960, F1-score = 0.0771, AUC = 0.6590; <math><msup><mi>χ</mi> <mn>2</mn></msup> </math> : accuracy = 0.8856, sensitivity = 0.0536, specificity = 0.9745, precision = 0.1837, F1-score = 0.0828, AUC = 0.6480) showed higher predictive performance for infant mortality compared to other approaches. Age at first marriage and birth, body mass index (BMI), birth interval, place of residence, religion, administrative division, parents education, occupation of mother, media-exposure, wealth index, gender of child, birth order, children ever born, toilet facility and cooking fuel were potential determinants of infant mortality in Bangladesh. Study findings may help women, stakeholders and policy-makers to take necessary steps for reducing infant mortality by creating awareness, expanding educational programs at community levels and public health interventions.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9209612/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-022-00180-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We aimed to assess different machine learning techniques for predicting infant mortality (<1 year) in Bangladesh. The decision tree (DT), random forest (RF), support vector machine (SVM) and logistic regression (LR) approaches were evaluated through accuracy, sensitivity, specificity, precision, F1-score, receiver operating characteristics curve and k-fold cross-validation via simulations. The Boruta algorithm and chi-square ( ) test were used for features selection of infant mortality. Overall, the RF technique (Boruta: accuracy = 0.8890, sensitivity = 0.0480, specificity = 0.9789, precision = 0.1960, F1-score = 0.0771, AUC = 0.6590; : accuracy = 0.8856, sensitivity = 0.0536, specificity = 0.9745, precision = 0.1837, F1-score = 0.0828, AUC = 0.6480) showed higher predictive performance for infant mortality compared to other approaches. Age at first marriage and birth, body mass index (BMI), birth interval, place of residence, religion, administrative division, parents education, occupation of mother, media-exposure, wealth index, gender of child, birth order, children ever born, toilet facility and cooking fuel were potential determinants of infant mortality in Bangladesh. Study findings may help women, stakeholders and policy-makers to take necessary steps for reducing infant mortality by creating awareness, expanding educational programs at community levels and public health interventions.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.