Array tomography: 15 years of synaptic analysis.

Q4 Neuroscience Neuronal signaling Pub Date : 2022-09-23 eCollection Date: 2022-09-01 DOI:10.1042/NS20220013
Anna Sanchez Avila, Christopher M Henstridge
{"title":"Array tomography: 15 years of synaptic analysis.","authors":"Anna Sanchez Avila, Christopher M Henstridge","doi":"10.1042/NS20220013","DOIUrl":null,"url":null,"abstract":"<p><p>Synapses are minuscule, intricate structures crucial for the correct communication between neurons. In the 125 years since the term synapse was first coined, we have advanced a long way when it comes to our understanding of how they work and what they do. Most of the fundamental discoveries have been invariably linked to advances in technology. However, due to their size, delicate structural integrity and their sheer number, our knowledge of synaptic biology has remained somewhat elusive and their role in neurodegenerative diseases still remains largely unknown. Here, we briefly discuss some of the imaging technologies used to study synapses and focus on the utility of the high-resolution imaging technique array tomography (AT). We introduce the AT technique and highlight some of the ways it is utilised with a particular focus on its power for analysing synaptic composition and pathology in human post-mortem tissue. We also discuss some of the benefits and drawbacks of techniques for imaging synapses and highlight some recent advances in the study of form and function by combining physiology and high-resolution synaptic imaging.</p>","PeriodicalId":74287,"journal":{"name":"Neuronal signaling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512143/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuronal signaling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/NS20220013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

Synapses are minuscule, intricate structures crucial for the correct communication between neurons. In the 125 years since the term synapse was first coined, we have advanced a long way when it comes to our understanding of how they work and what they do. Most of the fundamental discoveries have been invariably linked to advances in technology. However, due to their size, delicate structural integrity and their sheer number, our knowledge of synaptic biology has remained somewhat elusive and their role in neurodegenerative diseases still remains largely unknown. Here, we briefly discuss some of the imaging technologies used to study synapses and focus on the utility of the high-resolution imaging technique array tomography (AT). We introduce the AT technique and highlight some of the ways it is utilised with a particular focus on its power for analysing synaptic composition and pathology in human post-mortem tissue. We also discuss some of the benefits and drawbacks of techniques for imaging synapses and highlight some recent advances in the study of form and function by combining physiology and high-resolution synaptic imaging.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阵列断层扫描:突触分析 15 年。
突触是一种微小而复杂的结构,对神经元之间的正确交流至关重要。自突触一词首次出现以来的 125 年间,我们对其工作原理和作用的认识取得了长足的进步。大多数基本发现无一例外都与技术进步有关。然而,由于突触的大小、微妙的结构完整性和数量庞大,我们对突触生物学的认识仍然有些难以捉摸,它们在神经退行性疾病中的作用在很大程度上仍然未知。在此,我们简要讨论了用于研究突触的一些成像技术,并重点介绍了高分辨率成像技术阵列断层扫描(AT)的实用性。我们介绍了阵列断层成像技术,并重点介绍了它的一些使用方法,尤其是它在分析人类死后组织中突触组成和病理方面的能力。我们还讨论了突触成像技术的一些优点和缺点,并重点介绍了结合生理学和高分辨率突触成像技术研究形式和功能的一些最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
审稿时长
14 weeks
期刊最新文献
Neural mechanisms of dopamine function in learning and memory in Caenorhabditis elegans Cytokine activity in Parkinson's disease. Modelling Alzheimer’s disease in a Dish – Dissecting Amyloid-β Metabolism in Human Neurons Inflammation and emotion regulation: a narrative review of evidence and mechanisms in emotion dysregulation disorders Inhibition of insulin-degrading enzyme in human neurons promotes amyloid-β deposition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1