{"title":"Two new Cd(II)/Zn(II) coordination polymers: luminescence properties and synergistic treatment activity with ultrasound therapy on uterine fibroids.","authors":"Hong-Mei Liu, Xiao-Na Shang","doi":"10.1080/15685551.2022.2088976","DOIUrl":null,"url":null,"abstract":"<p><p>Through the self-assembly reaction of 5-substituted isophthalic acid and bis(imidazolyl) ligands with Cd(II) ion or Zn(II) ion, two new coordination polymers with the chemical formulae of [Cd(5-meo-ip)(bmip)]<sub>n</sub> (<b>1</b>) and [Zn(5-pro-ip)(bip)]<sub>n</sub>·2 n(H<sub>2</sub>O) (<b>2</b>) (5-meo-H<sub>2</sub>ip = 5-methoxyisophthalic acid, 5-pro-H<sub>2</sub>ip = 5-propoxyisophthalic acid, bmip = 1,3-bis(2-methylimidazolyl)propane bip = 1,3-bis(imidazolyl)propane) were successfully obtained and structurally characterized by a series of characterization techniques. Moreover, compounds <b>1</b>-<b>2</b> show intense blue luminescence at room temperature. Furthermore, the assessment of their treatment activity on the uterine fibroids combined with ultrasound therapy was evaluated and the specific mechanism was investigated at the same time. Firstly, the effect of compound treatment on uterine fibroids apoptosis was detected via flow cytometry. Next, the apoptotic signaling pathway activation was detected through the Caspase-3 and Caspase-8 Activity Assay Kit.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9225708/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designed Monomers and Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15685551.2022.2088976","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Through the self-assembly reaction of 5-substituted isophthalic acid and bis(imidazolyl) ligands with Cd(II) ion or Zn(II) ion, two new coordination polymers with the chemical formulae of [Cd(5-meo-ip)(bmip)]n (1) and [Zn(5-pro-ip)(bip)]n·2 n(H2O) (2) (5-meo-H2ip = 5-methoxyisophthalic acid, 5-pro-H2ip = 5-propoxyisophthalic acid, bmip = 1,3-bis(2-methylimidazolyl)propane bip = 1,3-bis(imidazolyl)propane) were successfully obtained and structurally characterized by a series of characterization techniques. Moreover, compounds 1-2 show intense blue luminescence at room temperature. Furthermore, the assessment of their treatment activity on the uterine fibroids combined with ultrasound therapy was evaluated and the specific mechanism was investigated at the same time. Firstly, the effect of compound treatment on uterine fibroids apoptosis was detected via flow cytometry. Next, the apoptotic signaling pathway activation was detected through the Caspase-3 and Caspase-8 Activity Assay Kit.
期刊介绍:
Designed Monomers and Polymers ( DMP) publishes prompt peer-reviewed papers and short topical reviews on all areas of macromolecular design and applications. Emphasis is placed on the preparations of new monomers, including characterization and applications. Experiments should be presented in sufficient detail (including specific observations, precautionary notes, use of new materials, techniques, and their possible problems) that they could be reproduced by any researcher wishing to repeat the work.
The journal also includes macromolecular design of polymeric materials (such as polymeric biomaterials, biomedical polymers, etc.) with medical applications.
DMP provides an interface between organic and polymer chemistries and aims to bridge the gap between monomer synthesis and the design of new polymers. Submssions are invited in the areas including, but not limited to:
-macromolecular science, initiators, macroinitiators for macromolecular design
-kinetics, mechanism and modelling aspects of polymerization
-new methods of synthesis of known monomers
-new monomers (must show evidence for polymerization, e.g. polycondensation, sequential combination, oxidative coupling, radiation, plasma polymerization)
-functional prepolymers of various architectures such as hyperbranched polymers, telechelic polymers, macromonomers, or dendrimers
-new polymeric materials with biomedical applications