Optical coherence tomography image based eye disease detection using deep convolutional neural network.

IF 4.7 3区 医学 Q1 MEDICAL INFORMATICS Health Information Science and Systems Pub Date : 2022-06-21 eCollection Date: 2022-12-01 DOI:10.1007/s13755-022-00182-y
Puneet, Rakesh Kumar, Meenu Gupta
{"title":"Optical coherence tomography image based eye disease detection using deep convolutional neural network.","authors":"Puneet, Rakesh Kumar, Meenu Gupta","doi":"10.1007/s13755-022-00182-y","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past few decades, health care industries and medical practitioners faced a lot of obstacles to diagnosing medical-related problems due to inadequate technology and availability of equipment. In the present era, computer science technologies such as IoT, Cloud Computing, Artificial Intelligence and its allied techniques, etc. play a crucial role in the identification of medical diseases, especially in the domain of Ophthalmology. Despite this, ophthalmologists have to perform the various disease diagnosis task manually which is time-consuming and the chances of error are also very high because some of the abnormalities of eye diseases possess the same symptoms. Furthermore, multiple autonomous systems also exist to categorize the diseases but their prediction rate does not accomplish state-of-art accuracy. In the proposed approach by implementing the concept of Attention, Transfer Learning with the Deep Convolution Neural Network, the model accomplished an accuracy of 97.79% and 95.6% on the training and testing data respectively. This autonomous model efficiently classifies the various oscular disorders namely Choroidal Neovascularization, Diabetic Macular Edema, Drusen from the Optical Coherence Tomography images. It may provide a realistic solution to the healthcare sector to bring down the ophthalmologist burden in the screening of Diabetic Retinopathy.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213631/pdf/","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-022-00182-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 10

Abstract

Over the past few decades, health care industries and medical practitioners faced a lot of obstacles to diagnosing medical-related problems due to inadequate technology and availability of equipment. In the present era, computer science technologies such as IoT, Cloud Computing, Artificial Intelligence and its allied techniques, etc. play a crucial role in the identification of medical diseases, especially in the domain of Ophthalmology. Despite this, ophthalmologists have to perform the various disease diagnosis task manually which is time-consuming and the chances of error are also very high because some of the abnormalities of eye diseases possess the same symptoms. Furthermore, multiple autonomous systems also exist to categorize the diseases but their prediction rate does not accomplish state-of-art accuracy. In the proposed approach by implementing the concept of Attention, Transfer Learning with the Deep Convolution Neural Network, the model accomplished an accuracy of 97.79% and 95.6% on the training and testing data respectively. This autonomous model efficiently classifies the various oscular disorders namely Choroidal Neovascularization, Diabetic Macular Edema, Drusen from the Optical Coherence Tomography images. It may provide a realistic solution to the healthcare sector to bring down the ophthalmologist burden in the screening of Diabetic Retinopathy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于光学相干断层成像的深度卷积神经网络眼部疾病检测。
在过去的几十年里,由于技术和设备的不足,医疗保健行业和医疗从业者在诊断医疗相关问题方面面临许多障碍。在当今时代,物联网、云计算、人工智能及其相关技术等计算机科学技术在医学疾病的识别中发挥着至关重要的作用,尤其是在眼科领域。尽管如此,眼科医生必须手动执行各种疾病诊断任务,这不仅耗时,而且由于一些眼病的异常具有相同的症状,因此出错的可能性也很高。此外,也存在多个自主系统对疾病进行分类,但其预测率没有达到最先进的准确性。该方法将注意力迁移学习的概念与深度卷积神经网络相结合,模型在训练数据和测试数据上的准确率分别达到97.79%和95.6%。该自主模型有效地对光学相干断层扫描图像中的脉络膜新生血管、糖尿病性黄斑水肿、Drusen等各种眼部疾病进行了分类。这可能为医疗保健部门提供一个现实的解决方案,以减轻眼科医生在糖尿病视网膜病变筛查中的负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.30
自引率
5.00%
发文量
30
期刊介绍: Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.
期刊最新文献
Explainable federated learning scheme for secure healthcare data sharing. Comorbidity progression analysis: patient stratification and comorbidity prediction using temporal comorbidity network. Explainable depression symptom detection in social media. A lightweight network based on multi-feature pseudo-color mapping for arrhythmia recognition. Tree hole rescue: an AI approach for suicide risk detection and online suicide intervention.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1