May Ling Tham, Khatijah Yusoff, Siti Sarah Othman, Suet Lin Chia
{"title":"Site-directed mutagenesis of the C-terminal of the Newcastle disease virus V protein.","authors":"May Ling Tham, Khatijah Yusoff, Siti Sarah Othman, Suet Lin Chia","doi":"10.4149/av_2022_203","DOIUrl":null,"url":null,"abstract":"<p><p> Newcastle disease virus (NDV) is a paramyxovirus that is highly pathogenic to poultry causing severe economic loss worldwide. The non-structural V protein is one of the virulence factors of the virus. It antagonises the interferon of the host innate immunity in order to allow successful virus replication in the host cells. However, detailed investigation of recombinant NDV expressing mutated V protein is scarce. In this study, a mesogenic recombinant NDV expressing GFP (rAF-GFP) was used to investigate the relation of V protein mutation on virus pathogenicity. Site-directed mutagenesis was performed using overlapping PCR to introduce four premature stop codons 456G>T, 537G>T, 624C>T and 642G>T in the V gene reading frame. The virus was then rescued and propagated in embryonated chicken eggs. However, instead of the substituted thymine, this nucleotide was mutated into cytosine in three rescued mutants, while 537G>T mutant could not be rescued. As a result, the premature stop codon was substituted with other amino acid and the V protein was expressed in full length. The pathogenicity type of the rAF (456G>T>C), rAF (624C>T>C), and rAF (642G>T>C) mutants remained to be as in mesogenic strains, suggesting that substituted amino acids were functionally interchangeable with the original amino acids present in V protein. It appears that an intact V protein is important for the virus survival. This study explored the possibility of V protein mutation in NDV through exploiting genetic engineering and warrants a further investigation on modifying mutations on a conserved protein in NDV or other paramyxoviruses. Keywords: Paramyxoviridae; Newcastle disease virus; V protein; C terminal; virulence factor.</p>","PeriodicalId":7205,"journal":{"name":"Acta virologica","volume":"66 2","pages":"139-148"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta virologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4149/av_2022_203","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Newcastle disease virus (NDV) is a paramyxovirus that is highly pathogenic to poultry causing severe economic loss worldwide. The non-structural V protein is one of the virulence factors of the virus. It antagonises the interferon of the host innate immunity in order to allow successful virus replication in the host cells. However, detailed investigation of recombinant NDV expressing mutated V protein is scarce. In this study, a mesogenic recombinant NDV expressing GFP (rAF-GFP) was used to investigate the relation of V protein mutation on virus pathogenicity. Site-directed mutagenesis was performed using overlapping PCR to introduce four premature stop codons 456G>T, 537G>T, 624C>T and 642G>T in the V gene reading frame. The virus was then rescued and propagated in embryonated chicken eggs. However, instead of the substituted thymine, this nucleotide was mutated into cytosine in three rescued mutants, while 537G>T mutant could not be rescued. As a result, the premature stop codon was substituted with other amino acid and the V protein was expressed in full length. The pathogenicity type of the rAF (456G>T>C), rAF (624C>T>C), and rAF (642G>T>C) mutants remained to be as in mesogenic strains, suggesting that substituted amino acids were functionally interchangeable with the original amino acids present in V protein. It appears that an intact V protein is important for the virus survival. This study explored the possibility of V protein mutation in NDV through exploiting genetic engineering and warrants a further investigation on modifying mutations on a conserved protein in NDV or other paramyxoviruses. Keywords: Paramyxoviridae; Newcastle disease virus; V protein; C terminal; virulence factor.
期刊介绍:
Acta virologica is an international journal of predominantly molecular and cellular virology. Acta virologica aims to publish papers reporting original results of fundamental and applied research mainly on human, animal and plant viruses at cellular and molecular level. As a matter of tradition, also rickettsiae are included. Areas of interest are virus structure and morphology, molecular biology of virus-cell interactions, molecular genetics of viruses, pathogenesis of viral diseases, viral immunology, vaccines, antiviral drugs and viral diagnostics.