{"title":"Frequency of Temperature Fluctuations Subtly Impacts the Life Histories of a Tropical Snail.","authors":"Hannah Arlauskas, Lea Derobert, Rachel Collin","doi":"10.1086/720129","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractMost organisms are faced with daily cyclic changes in a suite of environmental conditions, including temperature. In shallow marine waters, populations of the same species may experience either intertidal or subtidal conditions, such that some individuals experience extreme daily fluctuations as the tide ebbs and flows, while others only a few meters away experience less pronounced or less frequent fluctuations or almost constant thermal conditions. This study used a fully factorial combination of three thermal treatments and two diet treatments to test the hypotheses that (1) individuals experiencing fluctuating temperatures perform more poorly than those experiencing the same mean temperature under constant conditions and that (2) the negative impact of fluctuating temperatures is greater under food-limiting conditions. Five life-history components of the slipper snail <i>Crepidula</i> cf. <i>marginalis</i> were used as response variables. We found that temperature fluctuations impacted size at hatching and time to hatching, as well as growth rate, to some extent. Diet treatments impacted growth rates, clutch sizes, time to first brood, and time to hatching. There were no statistically significant interactions between the two factors. These results show that fluctuations between two temperatures that are typically experienced by these animals in the field can significantly affect fitness-related characters and, therefore, suggest the tidal height at which larvae settle can significantly impact individual fitness. This is one of the first studies to demonstrate that differences in the frequency of fluctuations, in the absence of differences in the magnitude or the mean, can have significant impacts on invertebrate life histories.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"242 3","pages":"197-206"},"PeriodicalIF":2.1000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Bulletin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/720129","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/5/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
AbstractMost organisms are faced with daily cyclic changes in a suite of environmental conditions, including temperature. In shallow marine waters, populations of the same species may experience either intertidal or subtidal conditions, such that some individuals experience extreme daily fluctuations as the tide ebbs and flows, while others only a few meters away experience less pronounced or less frequent fluctuations or almost constant thermal conditions. This study used a fully factorial combination of three thermal treatments and two diet treatments to test the hypotheses that (1) individuals experiencing fluctuating temperatures perform more poorly than those experiencing the same mean temperature under constant conditions and that (2) the negative impact of fluctuating temperatures is greater under food-limiting conditions. Five life-history components of the slipper snail Crepidula cf. marginalis were used as response variables. We found that temperature fluctuations impacted size at hatching and time to hatching, as well as growth rate, to some extent. Diet treatments impacted growth rates, clutch sizes, time to first brood, and time to hatching. There were no statistically significant interactions between the two factors. These results show that fluctuations between two temperatures that are typically experienced by these animals in the field can significantly affect fitness-related characters and, therefore, suggest the tidal height at which larvae settle can significantly impact individual fitness. This is one of the first studies to demonstrate that differences in the frequency of fluctuations, in the absence of differences in the magnitude or the mean, can have significant impacts on invertebrate life histories.
期刊介绍:
The Biological Bulletin disseminates novel scientific results in broadly related fields of biology in keeping with more than 100 years of a tradition of excellence. The Bulletin publishes outstanding original research with an overarching goal of explaining how organisms develop, function, and evolve in their natural environments. To that end, the journal publishes papers in the fields of Neurobiology and Behavior, Physiology and Biomechanics, Ecology and Evolution, Development and Reproduction, Cell Biology, Symbiosis and Systematics. The Bulletin emphasizes basic research on marine model systems but includes articles of an interdisciplinary nature when appropriate.