Cerebro-cerebellar interactions in nonhuman primates examined by optogenetic functional magnetic resonance imaging.

Cerebral cortex communications Pub Date : 2022-05-25 eCollection Date: 2022-01-01 DOI:10.1093/texcom/tgac022
Naokazu Goda, Taku Hasegawa, Daisuke Koketsu, Satomi Chiken, Satomi Kikuta, Hiromi Sano, Kenta Kobayashi, Atsushi Nambu, Norihiro Sadato, Masaki Fukunaga
{"title":"Cerebro-cerebellar interactions in nonhuman primates examined by optogenetic functional magnetic resonance imaging.","authors":"Naokazu Goda, Taku Hasegawa, Daisuke Koketsu, Satomi Chiken, Satomi Kikuta, Hiromi Sano, Kenta Kobayashi, Atsushi Nambu, Norihiro Sadato, Masaki Fukunaga","doi":"10.1093/texcom/tgac022","DOIUrl":null,"url":null,"abstract":"<p><p>Functional magnetic resonance imaging (fMRI) is a promising approach for the simultaneous and extensive scanning of whole-brain activities. Optogenetics is free from electrical and magnetic artifacts and is an ideal stimulation method for combined use with fMRI. However, the application of optogenetics in nonhuman primates (NHPs) remains limited. Recently, we developed an efficient optogenetic intracortical microstimulation method of the primary motor cortex (M1), which successfully induced forelimb movements in macaque monkeys. Here, we aimed to investigate how optogenetic M1 stimulation causes neural modulation in the local and remote brain regions in anesthetized monkeys using 7-tesla fMRI. We demonstrated that optogenetic stimulation of the M1 forelimb and hindlimb regions successfully evoked robust direct and remote fMRI activities. Prominent remote activities were detected in the anterior and posterior lobes in the contralateral cerebellum, which receive projections polysynaptically from the M1. We further demonstrated that the cerebro-cerebellar projections from these M1 regions were topographically organized, which is concordant with the somatotopic map in the cerebellar cortex previously reported in macaques and humans. The present study significantly enhances optogenetic fMRI in NHPs, resulting in profound understanding of the brain network, thereby accelerating the translation of findings from animal models to humans.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233902/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/texcom/tgac022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Functional magnetic resonance imaging (fMRI) is a promising approach for the simultaneous and extensive scanning of whole-brain activities. Optogenetics is free from electrical and magnetic artifacts and is an ideal stimulation method for combined use with fMRI. However, the application of optogenetics in nonhuman primates (NHPs) remains limited. Recently, we developed an efficient optogenetic intracortical microstimulation method of the primary motor cortex (M1), which successfully induced forelimb movements in macaque monkeys. Here, we aimed to investigate how optogenetic M1 stimulation causes neural modulation in the local and remote brain regions in anesthetized monkeys using 7-tesla fMRI. We demonstrated that optogenetic stimulation of the M1 forelimb and hindlimb regions successfully evoked robust direct and remote fMRI activities. Prominent remote activities were detected in the anterior and posterior lobes in the contralateral cerebellum, which receive projections polysynaptically from the M1. We further demonstrated that the cerebro-cerebellar projections from these M1 regions were topographically organized, which is concordant with the somatotopic map in the cerebellar cortex previously reported in macaques and humans. The present study significantly enhances optogenetic fMRI in NHPs, resulting in profound understanding of the brain network, thereby accelerating the translation of findings from animal models to humans.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过光遗传功能磁共振成像研究非人灵长类的大脑-小脑相互作用。
功能磁共振成像(fMRI)是一种对全脑活动进行同步、广泛扫描的有前途的方法。光遗传学不受电场和磁场干扰,是与 fMRI 结合使用的理想刺激方法。然而,光遗传学在非人灵长类动物(NHPs)中的应用仍然有限。最近,我们开发了一种高效的皮层内光遗传学初级运动皮层(M1)微刺激方法,成功地诱导了猕猴的前肢运动。在此,我们旨在利用 7 特斯拉 fMRI 研究光遗传 M1 刺激如何导致麻醉猴局部和远端脑区的神经调节。我们证明,对 M1 前肢和后肢区域的光遗传刺激成功地诱发了强大的直接和远程 fMRI 活动。在对侧小脑的前叶和后叶检测到了显著的远程活动,这些小脑接受来自 M1 的多突触投射。我们进一步证实,来自这些M1区域的小脑-小脑投射具有拓扑结构,这与之前在猕猴和人类中报道的小脑皮层体位图一致。本研究大大提高了在非人类动物中进行光遗传 fMRI 的能力,使人们对大脑网络有了深刻的了解,从而加快了从动物模型到人类的研究成果转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
17 weeks
期刊最新文献
On the coupling and decoupling of mind wandering and perception: a shared metabolism account. Striatal correlates of Bayesian beliefs in self-efficacy in adolescents and their relation to mood and autonomy: a pilot study Frontal mechanisms underlying primate calls recognition by humans Detection and characterization of resting state functional networks in squirrel monkey brain. Methamphetamine enhances neural activation during anticipation of loss in the monetary incentive delay task.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1